A First Course in Differential Equations with Modeling Applications

Ninth Edition

Dennis G. Zill Loyola Marymount University

Differential Equations with Boundary-Vary Problems

Seventh Edition

Dennis G. Zill Loyola Marymount University

Michael R. Cullen Late of Loyola Marymount University

By

Warren S. Wright Loyola Marymount University

Carol D. Wright

Australia • Brazil • Japan • Korea • Mexico • Singapore • Spain • United Kingdom • United States

Table of Contents

1	Introduction to Differential Equations	1
2	First-Order Differential Equations	27
3	Modeling with First-Order Differential Equations	86
4	Higher-Order Differential Equations	137
5	Modeling with Higher-Order Differential Equations	231
6	Series Solutions of Linear Equations	274
7	The Laplace Transform	352
8	Systems of Linear First-Order Differential Equations	419
9	Numerical Solutions of Ordinary Differential Equations	478
10	Plane Autonomous Systems	506
11	Fourier Series	538
12	Boundary-Value Problems in Rectangular Coordinates	586
13	Boundary-Value Problems in Other Coordinate Systems	675
14	Integral Transforms	717
15	Numerical Solutions of Partial Differential Equations	761
Appendix I	Gamma function	783
Appendix II	Matrices	785

3 2009 Brooks/Cole, Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be reproduced, transmitted, stored, or used in any form or by any means graphic, electronic, or mechanical, including but not limited to photocopying, recording, scanning, digitizing, taping, Web distribution, information networks, or information storage and retrieval systems, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the publisher except as may be permitted by the license terms below.

For product information and technology assistance, contact us at Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product, submit all requests online at www.cengage.com/permissions Further permissions questions can be emailed to permissionrequest@cengage.com ISBN-13: 978-0-495-38609-4 ISBN-10: 0-495-38609-X

Brooks/Cole

10 Davis Drive Belmont, CA 94002-3098 USA

Cengage Learning is a leading provider of customized learning solutions with office locations around the globe, including Singapore, the United Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at: international.cengage.com/region

Cengage Learning products are represented in Canada by Nelson Education, Ltd.

For your course and learning solutions, visit academic.cengage.com

Purchase any of our products at your local college store or at our preferred online store www.ichapters.com

NOTE: UNDER NO CIRCUMSTANCES MAY THIS MATERIAL OR ANY PORTION THEREOF BE SOLD, LICENSED, AUCTIONED, OR OTHERWISE REDISTRIBUTED EXCEPT AS MAY BE PERMITTED BY THE LICENSE TERMS HEREIN.

READ IMPORTANT LICENSE INFORMATION

Dear Professor or Other Supplement Recipient:

Cengage Learning has provided you with this product (the "Supplement") for your review and, to the extent that you adopt the associated textbook for use in connection with your course (the "Course"), you and your students who purchase the textbook may use the Supplement as described below. Cengage Learning has established these use limitations in response to concerns raised by authors, professors, and other users regarding the pedagogical problems stemming from unlimited distribution of Supplements.

Cengage Learning hereby grants you a nontransferable license to use the Supplement in connection with the Course, subject to the following conditions. The Supplement is for your personal, noncommercial use only and may not be reproduced, posted electronically or distributed, except that portions of the Supplement may be provided to your students IN PRINT FORM ONLY in connection with your instruction of the Course, so long as such students are advised that they may not copy or distribute any portion of the Supplement to any third party. You may not sell, license, auction, or otherwise redistribute the Supplement in any form. We ask that you take reasonable steps to protect the Supplement from unauthorized use, reproduction, or distribution. Your use of the Supplement indicates your acceptance of the conditions set forth in this Agreement. If you do not accept these conditions, you must return the Supplement unused within 30 days of receipt.

All rights (including without limitation, copyrights, patents, and trade secrets) in the Supplement are and will remain the sole and exclusive property of Cengage Learning and/or its licensors. The Supplement is furnished by Cengage Learning on an "as is" basis without any warranties, express or implied. This Agreement will be governed by and construed pursuant to the laws of the State of New York, without regard to such State's conflict of law rules.

Thank you for your assistance in helping to safeguard the integrity of the content contained in this Supplement. We trust you find the Supplement a useful teaching tool.

Printed in Canada 1 2 3 4 5 6 7 11 10 09 08

Introduction to Differential Equations

Exercises 1.1

Definitions and Terminology

- 1. Second order; linear
- 2. Third order; nonlinear because of $(dy/dx)^4$
- 3. Fourth order; linear
- 4. Second order; nonlinear because of $\cos(r+u)$
- 5. Second order; nonlinear because of $(dy/dx)^2$ or $\sqrt{1 + (dy/dx)^2}$
- **6.** Second order; nonlinear because of R^2
- 7. Third order; linear
- 8. Second order; nonlinear because of \dot{x}^2
- 9. Writing the differential equation in the form $x(dy/dx) + y^2 = 1$, we see that it is nonlinear in y because of y^2 . However, writing it in the form $(y^2 1)(dx/dy) + x = 0$, we see that it is linear in x.
- 10. Writing the differential equation in the form $u(dv/du) + (1+u)v = ue^u$ we see that it is linear in v. However, writing it in the form $(v + uv ue^u)(du/dv) + u = 0$, we see that it is nonlinear in u.
- 11. From $y = e^{-x/2}$ we obtain $y' = -\frac{1}{2}e^{-x/2}$. Then $2y' + y = -e^{-x/2} + e^{-x/2} = 0$.
- **12.** From $y = \frac{6}{5} \frac{6}{5}e^{-20t}$ we obtain $dy/dt = 24e^{-20t}$, so that

$$\frac{dy}{dt} + 20y = 24e^{-20t} + 20\left(\frac{6}{5} - \frac{6}{5}e^{-20t}\right) = 24.$$

- 13. From $y = e^{3x} \cos 2x$ we obtain $y' = 3e^{3x} \cos 2x 2e^{3x} \sin 2x$ and $y'' = 5e^{3x} \cos 2x 12e^{3x} \sin 2x$, so that y'' 6y' + 13y = 0.
- 14. From $y = -\cos x \ln(\sec x + \tan x)$ we obtain $y' = -1 + \sin x \ln(\sec x + \tan x)$ and $y'' = \tan x + \cos x \ln(\sec x + \tan x)$. Then $y'' + y = \tan x$.
- 15. The domain of the function, found by solving $x + 2 \ge 0$, is $[-2, \infty)$. From $y' = 1 + 2(x+2)^{-1/2}$ we

1

Exercises 1.1 Definitions and Terminology

have

$$(y-x)y' = (y-x)[1 + (2(x+2)^{-1/2}]$$

= $y - x + 2(y-x)(x+2)^{-1/2}$
= $y - x + 2[x + 4(x+2)^{1/2} - x](x+2)^{-1/2}$
= $y - x + 8(x+2)^{1/2}(x+2)^{-1/2} = y - x + 8.$

An interval of definition for the solution of the differential equation is $(-2, \infty)$ because y' is defined at x = -2.

16. Since $\tan x$ is not defined for $x = \pi/2 + n\pi$, n an integer, the domain of $y = 5 \tan^{-1} \{x \mid 5x \neq \pi/2 + n\pi\}$ or $\{x \mid x \neq \pi/10 + n\pi/5\}$. From $y' = 25 \sec^2 5x$ we have

$$y' = 25(1 + \tan^2 5x) = 25 + 25\tan^2 5x = 25 + y^2.$$

An interval of definition for the solution of the differential equation is $(-\pi/10, \pi/10)$. An interval is $(\pi/10, 3\pi/10)$, and so on.

17. The domain of the function is $\{x \mid 4 - x^2 \neq 0\}$ or $\{x \mid x \neq -2 \text{ or } x \neq 2\}$. From y' = 2 = - we have

$$y' = 2x \left(\frac{1}{4-x^2}\right)^2 = 2xy.$$

An interval of definition for the solution of the differential equation is (-2, 2). Other inter $(-\infty, -2)$ and $(2, \infty)$.

18. The function is $y = 1/\sqrt{1 - \sin x}$, whose domain is obtained from $1 - \sin x \neq 0$ or $\sin x = 1$. the domain is $\{x \mid x \neq \pi/2 + 2n\pi\}$. From $y' = -\frac{1}{2}(1 - \sin x)^{-3/2}(-\cos x)$ we have

$$2y' = (1 - \sin x)^{-3/2} \cos x = [(1 - \sin x)^{-1/2}]^3 \cos x = y^3 \cos x.$$

An interval of definition for the solution of the differential equation is $(\pi/2, 5\pi/2)$. An interval is $(5\pi/2, 9\pi/2)$ and so on.

19. Writing $\ln(2X-1) - \ln(X-1) = t$ and differentiating implicitly we obtain

$$\frac{2}{2X-1}\frac{dX}{dt} - \frac{1}{X-1}\frac{dX}{dt} = 1$$
$$\left(\frac{2}{2X-1} - \frac{1}{X-1}\right)\frac{dX}{dt} = 1$$
$$\frac{2X-2-2X+1}{(2X-1)(X-1)}\frac{dX}{dt} = 1$$
$$\frac{dX}{dt} = -(2X-1)(X-1) = (X-1)(1-2X)$$

2

Х

Y

Exponentiating both sides of the implicit solution we obtain

$$\frac{2X-1}{X-1} = e^{t}$$

$$2X-1 = Xe^{t} - e^{t}$$

$$(e^{t}-1) = (e^{t}-2)X$$

$$X = \frac{e^{t}-1}{e^{t}-2}$$

$$\frac{4}{2}$$

$$\frac{2}{2}$$

$$-----2$$

$$-4$$

$$\frac{4}{2}$$

$$-----2$$

$$-2$$

$$-2$$

$$-2$$

$$-4$$

Solving $e^t - 2 = 0$ we get $t = \ln 2$. Thus, the solution is defined on $(-\infty, \ln 2)$ or on $(\ln 2, \infty)$. The graph of the solution defined on $(-\infty, \ln 2)$ is dashed, and the graph of the solution defined on $(\ln 2, \infty)$ is solid.

20. Implicitly differentiating the solution, we obtain

$$-2x^{2} \frac{dy}{dx} - 4xy + 2y \frac{dy}{dx} = 0$$

$$-x^{2} dy - 2xy dx + y dy = 0$$

$$2xy dx + (x^{2} - y)dy = 0.$$

$$-4 -2 - 2 - 4 - x$$

Using the quadratic formula to solve $y^2 - 2x^2y - 1 = 0$ for y, we get $y = (2x^2 \pm \sqrt{4x^4 + 4})/2 = x^2 \pm \sqrt{x^4 + 1}$. Thus, two explicit solutions are $y_1 = x^2 + \sqrt{x^4 + 1}$ and $y_2 = x^2 - \sqrt{x^4 + 1}$. Both solutions are defined on $(-\infty, \infty)$. The graph of $y_1(x)$ is solid and the graph of y_2 is dashed.

21. Differentiating $P = c_1 e^t / (1 + c_1 e^t)$ we obtain $\frac{dP}{dt} = \frac{(1 + c_1 e^t) c_1 e^t - c_1 e^t \cdot c_1 e^t}{(1 + c_1 e^t)^2} = \frac{c_1 e^t}{1 + c_1 e^t} \frac{\left[(1 + c_1 e^t) - c_1 e^t\right]}{1 + c_1 e^t}$ $= \frac{c_1 e^t}{1 + c_1 e^t} \left[1 - \frac{c_1 e^t}{1 + c_1 e^t}\right] = P(1 - P).$ 22. Differentiating $y = e^{-x^2} \int_0^x e^{t^2} dt + c_1 e^{-x^2}$ we obtain

$$y' = e^{-x^2} e^{x^2} - 2xe^{-x^2} \int_0^x e^{t^2} dt - 2c_1 x e^{-x^2} = 1 - 2xe^{-x^2} \int_0^x e^{t^2} dt - 2c_1 x e^{-x^2}.$$

Substituting into the differential equation, we have

$$y' + 2xy = 1 - 2xe^{-x^2} \int_0^x e^{t^2} dt - 2c_1 x e^{-x^2} + 2xe^{-x^2} \int_0^x e^{t^2} dt + 2c_1 x e^{-x^2} = 1.$$

Exercises 1.1 Definitions and Terminology

23. From
$$y = c_1 e^{2x} + c_2 x e^{2x}$$
 we obtain $\frac{dy}{dx} = (2c_1 + c_2)e^{2x} + 2c_2 x e^{2x}$ and $\frac{d^2y}{dx^2} = (4c_1 + 4c_2)e^{2x} + 4c_2 x e^{2x}$, so that

$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = (4c_1 + 4c_2 - 8c_1 - 4c_2 + 4c_1)e^{2x} + (4c_2 - 8c_2 + 4c_2)xe^{2x} = 0.$$

24. From $y = c_1 x^{-1} + c_2 x + c_3 x \ln x + 4x^2$ we obtain

$$\frac{dy}{dx} = -c_1 x^{-2} + c_2 + c_3 + c_3 \ln x + 8x,$$
$$\frac{d^2 y}{dx^2} = 2c_1 x^{-3} + c_3 x^{-1} + 8,$$

and

$$\frac{d^3y}{dx^3} = -6c_1x^{-4} - c_3x^{-2},$$

so that

$$x^{3} \frac{d^{3}y}{dx^{3}} + 2x^{2} \frac{d^{2}y}{dx^{2}} - x \frac{dy}{dx} + y = (-6c_{1} + 4c_{1} + c_{1} + c_{1})x^{-1} + (-c_{3} + 2c_{3} - c_{2} - c_{3} + c_{2})x$$

+ $(-c_{3} + c_{3})x \ln x + (16 - 8 + 4)x^{2}$
= $12x^{2}$.

25. From $y = \begin{cases} -x^2, & x < 0 \\ x^2, & x \ge 0 \end{cases}$ we obtain $y' = \begin{cases} -2x, & x < 0 \\ 2x, & x \ge 0 \end{cases}$ so that xy' - 2y = 0.

26. The function y(x) is not continuous at x = 0 since $\lim_{x \to 0^-} y(x) = 5$ and $\lim_{x \to 0^+} y(x) = -5$. Thus, y'(x) does not exist at x = 0.

27. From $y = e^{mx}$ we obtain $y' = me^{mx}$. Then y' + 2y = 0 implies

$$me^{mx} + 2e^{mx} = (m+2)e^{mx} = 0.$$

Since $e^{mx} > 0$ for all x, m = -2. Thus $y = e^{-2x}$ is a solution.

28. From $y = e^{mx}$ we obtain $y' = me^{mx}$. Then 5y' = 2y implies

$$5me^{mx} = 2e^{mx}$$
 or $m = \frac{2}{5}$.

Thus $y = e^{2x/5} > 0$ is a solution.

29. From
$$y = e^{mx}$$
 we obtain $y' = me^{mx}$ and $y'' = m^2 e^{mx}$. Then $y'' - 5y' + 6y = 0$ implies
 $m^2 e^{mx} - 5me^{mx} + 6e^{mx} = (m-2)(m-3)e^{mx} = 0.$

Since $e^{mx} > 0$ for all x, m = 2 and m = 3. Thus $y = e^{2x}$ and $y = e^{3x}$ are solutions.

30. From
$$y = e^{mx}$$
 we obtain $y' = me^{mx}$ and $y'' = m^2 e^{mx}$. Then $2y'' + 7y' - 4y = 0$ implies
 $2m^2 e^{mx} + 7me^{mx} - 4e^{mx} = (2m-1)(m+4)e^{mx} = 0.$

Since $e^{mx} > 0$ for all $x, m = \frac{1}{2}$ and m = -4. Thus $y = e^{x/2}$ and $y = e^{-4x}$ are solutions. **31.** From $y = x^m$ we obtain $y' = mx^{m-1}$ and $y'' = m(m-1)x^{m-2}$. Then xy'' + 2y' = 0 implies $xm(m-1)x^{m-2} + 2mx^{m-1} = [m(m-1) + 2m]x^{m-1} = (m^2 + m)x^{m-1}$ $= m(m+1)x^{m-1} = 0.$

Since $x^{m-1} > 0$ for x > 0, m = 0 and m = -1. Thus y = 1 and $y = x^{-1}$ are solutions.

32. From
$$y = x^m$$
 we obtain $y' = mx^{m-1}$ and $y'' = m(m-1)x^{m-2}$. Then $x^2y'' - 7xy' + 15y = 0$ implies
 $x^2m(m-1)x^{m-2} - 7xmx^{m-1} + 15x^m = [m(m-1) - 7m + 15]x^m$

$$= (m^2 - 8m + 15)x^m = (m - 3)(m - 5)x^m = 0.$$

Since $x^m > 0$ for x > 0, m = 3 and m = 5. Thus $y = x^3$ and $y = x^5$ are solutions.

In Problems 33-36 we substitute y = c into the differential equations and use y' = 0 and y'' = 0

33. Solving 5c = 10 we see that y = 2 is a constant solution.

34. Solving $c^2 + 2c - 3 = (c+3)(c-1) = 0$ we see that y = -3 and y = 1 are constant solutions.

- **35.** Since 1/(c-1) = 0 has no solutions, the differential equation has no constant solutions.
- **36.** Solving 6c = 10 we see that y = 5/3 is a constant solution.

37. From $x = e^{-2t} + 3e^{6t}$ and $y = -e^{-2t} + 5e^{6t}$ we obtain

$$\frac{dx}{dt} = -2e^{-2t} + 18e^{6t}$$
 and $\frac{dy}{dt} = 2e^{-2t} + 30e^{6t}$.

Then

$$x + 3y = (e^{-2t} + 3e^{6t}) + 3(-e^{-2t} + 5e^{6t}) = -2e^{-2t} + 18e^{6t} = \frac{dx}{dt}$$
$$5x + 3y = 5(e^{-2t} + 3e^{6t}) + 3(-e^{-2t} + 5e^{6t}) = 2e^{-2t} + 30e^{6t} = \frac{dy}{dt}.$$

38. From
$$x = \cos 2t + \sin 2t + \frac{1}{5}e^t$$
 and $y = -\cos 2t - \sin 2t - \frac{1}{5}e^t$ we obtain

$$\frac{dx}{dt} = -2\sin 2t + 2\cos 2t + \frac{1}{5}e^t \quad \text{and} \quad \frac{dy}{dt} = 2\sin 2t - 2\cos 2t - \frac{1}{5}e^t$$
$$\frac{d^2x}{dt^2} = -4\cos 2t - 4\sin 2t + \frac{1}{5}e^t \quad \text{and} \quad \frac{d^2y}{dt^2} = 4\cos 2t + 4\sin 2t - \frac{1}{5}e^t.$$

Then

and

$$4y + c^{t} = 4(-\cos 2t - \sin 2t - \frac{1}{5}e^{t}) + e^{t} = -4\cos 2t - 4\sin 2t + \frac{1}{5}e^{t} = \frac{d^{2}x}{dt^{2}}$$

and

Exercises 1.1 Definitions and Terminology

$$4x - e^{t} = 4(\cos 2t + \sin 2t + \frac{1}{5}e^{t}) - e^{t} = 4\cos 2t + 4\sin 2t - \frac{1}{5}e^{t} = \frac{d^{2}y}{dt^{2}}.$$

- **39.** $(y')^2 + 1 = 0$ has no real solutions because $(y')^2 + 1$ is positive for all functions $y = \phi(x)$.
- **40.** The only solution of $(y')^2 + y^2 = 0$ is y = 0, since if $y \neq 0$, $y^2 > 0$ and $(y')^2 + y^2 \ge y^2 > 0$.
- 41. The first derivative of $f(x) = e^x$ is e^x . The first derivative of $f(x) = e^{kx}$ is ke^{kx} . The differential equations are y' = y and y' = ky, respectively.
- 42. Any function of the form $y = ce^x$ or $y = ce^{-x}$ is its own second derivative. The corresponding differential equation is y'' y = 0. Functions of the form $y = c \sin x$ or $y = c \cos x$ have second derivatives that are the negatives of themselves. The differential equation is y'' + y = 0.
- **43.** We first note that $\sqrt{1-y^2} = \sqrt{1-\sin^2 x} = \sqrt{\cos^2 x} = |\cos x|$. This prompts us to consider values of x for which $\cos x < 0$, such as $x = \pi$. In this case

$$\frac{dy}{dx}\Big|_{x=\pi} = \frac{d}{dx}(\sin x)\Big|_{x=\pi} = \cos x\Big|_{x=\pi} = \cos \pi = -1,$$

but

$$\sqrt{1-y^2}|_{x=\pi} = \sqrt{1-\sin^2\pi} = \sqrt{1} = 1.$$

Thus, $y = \sin x$ will only be a solution of $y' = \sqrt{1 - y^2}$ when $\cos x > 0$. An interval of definition is then $(-\pi/2, \pi/2)$. Other intervals are $(3\pi/2, 5\pi/2)$, $(7\pi/2, 9\pi/2)$, and so on.

44. Since the first and second derivatives of $\sin t$ and $\cos t$ involve $\sin t$ and $\cos t$, it is plausible that a linear combination of these functions, $A \sin t + B \cos t$, could be a solution of the differential equation. Using $y' = A \cos t - B \sin t$ and $y'' = -A \sin t - B \cos t$ and substituting into the differential equation we get

$$y'' + 2y' + 4y = -A\sin t - B\cos t + 2A\cos t - 2B\sin t + 4A\sin t + 4B\cos t$$
$$= (3A - 2B)\sin t + (2A + 3B)\cos t = 5\sin t.$$

Thus 3A - 2B = 5 and 2A + 3B = 0. Solving these simultaneous equations we find $A = \frac{15}{13}$ and $B = -\frac{10}{13}$. A particular solution is $y = \frac{15}{13} \sin t - \frac{10}{13} \cos t$.

- 45. One solution is given by the upper portion of the graph with domain approximately (0, 2.6). The other solution is given by the lower portion of the graph, also with domain approximately (0, 2.6).
- 46. One solution, with domain approximately $(-\infty, 1.6)$ is the portion of the graph in the second quadrant together with the lower part of the graph in the first quadrant. A second solution, with domain approximately (0, 1.6) is the upper part of the graph in the first quadrant. The third solution, with domain $(0, \infty)$, is the part of the graph in the fourth quadrant.

47. Differentiating $(x^3 + y^3)/xy = 3c$ we obtain

$$\frac{xy(3x^2+3y^2y')-(x^3+y^3)(xy'+y)}{x^2y^2} = 0$$

$$3x^3y+3xy^3y'-x^4y'-x^3y-xy^3y'-y^4 = 0$$

$$(3xy^3-x^4-xy^3)y' = -3x^3y+x^3y+y^4$$

$$y' = \frac{y^4-2x^3y}{2xy^3-x^4} = \frac{y(y^3-2x^3)}{x(2y^3-x^3)}.$$

48. A tangent line will be vertical where y' is undefined, or in this case, where $x(2y^3 - x^3) = 0$. This gives x = 0 and $2y^3 = x^3$. Substituting $y^3 = x^3/2$ into $x^3 + y^3 = 3xy$ we get

$$x^{3} + \frac{1}{2}x^{3} = 3x\left(\frac{1}{2^{1/3}}x\right)$$
$$\frac{3}{2}x^{3} = \frac{3}{2^{1/3}}x^{2}$$
$$x^{3} = 2^{2/3}x^{2}$$
$$x^{2}(x - 2^{2/3}) = 0.$$

Thus, there are vertical tangent lines at x = 0 and $x = 2^{2/3}$, or at (0,0) and $(2^{2/3}, 2^{1/3})$. Since $2^{2/3} \approx 1.59$, the estimates of the domains in Problem 46 were close.

- 49. The derivatives of the functions are $\phi'_1(x) = -x/\sqrt{25-x^2}$ and $\phi'_2(x) = x/\sqrt{25-x^2}$, neither of which is defined at $x = \pm 5$.
- 50. To determine if a solution curve passes through (0,3) we let t = 0 and P = 3 in the equation $P = c_1 e^t / (1 + c_1 e^t)$. This gives $3 = c_1 / (1 + c_1)$ or $c_1 = -\frac{3}{2}$. Thus, the solution curve

$$P = \frac{(-3/2)e^t}{1 - (3/2)e^t} = \frac{-3e^t}{2 - 3e^t}$$

passes through the point (0,3). Similarly, letting t = 0 and P = 1 in the equation for the oneparameter family of solutions gives $1 = c_1/(1 + c_1)$ or $c_1 = 1 + c_1$. Since this equation has no solution, no solution curve passes through (0, 1).

- 51. For the first-order differential equation integrate f(x). For the second-order differential equation integrate twice. In the latter case we get $y = \int (\int f(x)dx)dx + c_1x + c_2$.
- 52. Solving for y' using the quadratic formula we obtain the two differential equations

$$y' = \frac{1}{x} \left(2 + 2\sqrt{1 + 3x^6} \right)$$
 and $y' = \frac{1}{x} \left(2 - 2\sqrt{1 + 3x^6} \right)$,

so the differential equation cannot be put in the form dy/dx = f(x, y).

Exercises 1.1 Definitions and Terminology

- 53. The differential equation yy' xy = 0 has normal form dy/dx = x. These are not equivalent because y = 0 is a solution of the first differential equation but not a solution of the second.
- 54. Differentiating we get $y' = c_1 + 3c_2x^2$ and $y'' = 6c_2x$. Then $c_2 = y''/6x$ and $c_1 = y' xy''/2$, so

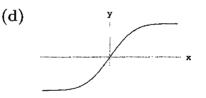
$$y = \left(y' - \frac{xy''}{2}\right)x + \left(\frac{y''}{6x}\right)x^3 = xy' - \frac{1}{3}x^2y''$$

and the differential equation is $x^2y'' - 3xy' + 3y = 0$.

- 55. (a) Since e^{-x^2} is positive for all values of x, dy/dx > 0 for all x, and a solution, y(x), of the differential equation must be increasing on any interval.
 - (b) $\lim_{x \to -\infty} \frac{dy}{dx} = \lim_{x \to -\infty} e^{-x^2} = 0$ and $\lim_{x \to \infty} \frac{dy}{dx} = \lim_{x \to \infty} e^{-x^2} = 0$. Since dy/dx approaches 0 as x approaches $-\infty$ and ∞ , the solution curve has horizontal asymptotes to the left and to the right.
 - (c) To test concavity we consider the second derivative

$$\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{dx}\left(e^{-x^2}\right) = -2xe^{-x^2}.$$

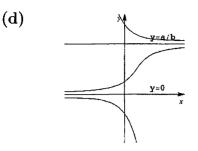
Since the second derivative is positive for x < 0 and negative for x > 0, the solution curve is concave up on $(-\infty, 0)$ and concave down on $(0, \infty)$. x



- 56. (a) The derivative of a constant solution y = c is 0, so solving 5 c = 0 we see that c = 5 and so y = 5 is a constant solution.
 - (b) A solution is increasing where dy/dx = 5 y > 0 or y < 5. A solution is decreasing where dy/dx = 5 y < 0 or y > 5.
- 57. (a) The derivative of a constant solution is 0, so solving y(a by) = 0 we see that y = 0 and y = a/b are constant solutions.
 - (b) A solution is increasing where dy/dx = y(a by) = by(a/b y) > 0 or 0 < y < a/b. A solution is decreasing where dy/dx = by(a/b y) < 0 or y < 0 or y > a/b.
 - (c) Using implicit differentiation we compute

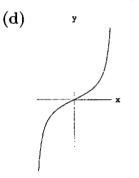
$$\frac{d^2y}{dx^2} = y(-by') + y'(a - by) = y'(a - 2by).$$

Solving $d^2y/dx^2 = 0$ we obtain y = a/2b. Since $d^2y/dx^2 > 0$ for 0 < y < a/2b and $d^2y/dx^2 < 0$ for a/2b < y < a/b, the graph of $y = \phi(x)$ has a point of inflection at y = a/2b.



58. (a) If y = c is a constant solution then y' = 0, but $c^2 + 4$ is never 0 for any real value of c.

- (b) Since $y' = y^2 + 4 > 0$ for all x where a solution $y = \phi(x)$ is defined, any solution must be increasing on any interval on which it is defined. Thus it cannot have any relative extrema.
- (c) Using implicit differentiation we compute $d^2y/dx^2 = 2yy' = 2y(y^2 + 4)$. Setting $d^2y/dx^2 = 0$ we see that y = 0 corresponds to the only possible point of inflection. Since $d^2y/dx^2 < 0$ for y < 0 and $d^2y/dx^2 > 0$ for y > 0, there is a point of inflection where y = 0.



59. In Mathematica use

 $\begin{array}{l} Clear[y] \\ y[x_{-}] := x \; Exp[5x] \; Cos[2x] \\ y[x] \\ y^{(1)}[x] \; - \; 20y^{(1)}[x] \; + \; 158y^{(1)}[x] \; - \; 580y^{(1)}[x] \; + 841y[x] / / Simplify \end{array}$

The output will show $y(x) = e^{5x}x \cos 2x$, which verifies that the correct function was entered, and 0, which verifies that this function is a solution of the differential equation.

50. In Mathematica use

```
\begin{array}{l} Clear[y] \\ y[x_{-}] := 20 Cos[5 Log[x]] / x - 3 Sin[5 Log[x]] / x \\ y[x] \\ x^3 \ y^{\prime \prime \prime}[x] + 2x^2 \ y^{\prime \prime}[x] + 20x \ y^{\prime}[x] - 78 y[x] / / Simplify \end{array}
```

The output will show $y(x) = 20\cos(5\ln x)/x - 3\sin(5\ln x)/x$, which verifies that the correct function was entered, and 0, which verifies that this function is a solution of the differential equation.

Exercises 1.2 Initial-Value Problems

Exercises 1.2

1. Solving $-1/3 = 1/(1+c_1)$ we get $c_1 = -4$. The solution is $y = 1/(1-4e^{-x})$.

2. Solving $2 = 1/(1 + c_1 e)$ we get $c_1 = -(1/2)e^{-1}$. The solution is $y = 2/(2 - e^{-(x-1)})$.

Initial-Value Problems

- 3. Letting x = 2 and solving 1/3 = 1/(4+c) we get c = -1. The solution is $y = 1/(x^2 1)$. This solution is defined on the interval $(1, \infty)$.
- 4. Letting x = -2 and solving 1/2 = 1/(4+c) we get c = -2. The solution is $y = 1/(x^2-2)$. This solution is defined on the interval $(-\infty, -\sqrt{2})$.
- 5. Letting x = 0 and solving 1 = 1/c we get c = 1. The solution is $y = 1/(x^2 + 1)$. This solution is defined on the interval $(-\infty, \infty)$.
- 6. Letting x = 1/2 and solving -4 = 1/(1/4+c) we get c = -1/2. The solution is $y = 1/(x^2 1/2) = 2/(2x^2 1)$. This solution is defined on the interval $(-1/\sqrt{2}, 1/\sqrt{2})$.

In Problems 7-10 we use $x = c_1 \cos t + c_2 \sin t$ and $x' = -c_1 \sin t + c_2 \cos t$ to obtain a system of two equations in the two unknowns c_1 and c_2 .

7. From the initial conditions we obtain the system

$$c_1 = -1$$

 $c_2 = 8.$

The solution of the initial-value problem is $x = -\cos t + 8\sin t$.

8. From the initial conditions we obtain the system

$$c_2 = 0$$

 $-c_1 = 1.$

The solution of the initial-value problem is $x = -\cos t$.

9. From the initial conditions we obtain

$$\frac{\sqrt{3}}{2}c_1 + \frac{1}{2}c_2 = \frac{1}{2}$$
$$-\frac{1}{2}c_1 + \frac{\sqrt{3}}{2}c_2 = 0.$$

Solving, we find $c_1 = \sqrt{3}/4$ and $c_2 = 1/4$. The solution of the initial-value problem is $x = (\sqrt{3}/4) \cos t + (1/4) \sin t$.

10. From the initial conditions we obtain

$$\frac{\sqrt{2}}{2}c_1 + \frac{\sqrt{2}}{2}c_2 = \sqrt{2}$$
$$-\frac{\sqrt{2}}{2}c_1 + \frac{\sqrt{2}}{2}c_2 = 2\sqrt{2}.$$

Solving, we find $c_1 = -1$ and $c_2 = 3$. The solution of the initial-value problem is $x = -\cos t + 3\sin t$.

- Problems 11-14 we use $y = c_1e^x + c_2e^{-x}$ and $y' = c_1e^x c_2e^{-x}$ to obtain a system of two equations
- \therefore the two unknowns c_1 and c_2 .
- 11. From the initial conditions we obtain

$$c_1 + c_2 = 1$$

 $c_1 - c_2 = 2.$

Solving, we find $c_1 = \frac{3}{2}$ and $c_2 = -\frac{1}{2}$. The solution of the initial-value problem is $y = \frac{3}{2}e^x - \frac{1}{2}e^{-x}$. 12. From the initial conditions we obtain

$$ec_1 + e^{-1}c_2 = 0$$

 $ec_1 - e^{-1}c_2 = e.$

Solving, we find $c_1 = \frac{1}{2}$ and $c_2 = -\frac{1}{2}e^2$. The solution of the initial-value problem is $y = \frac{1}{2}e^x - \frac{1}{2}e^2e^{-x} = \frac{1}{2}e^x - \frac{1}{2}e^{2-x}$.

13. From the initial conditions we obtain

$$e^{-1}c_1 + ec_2 = 5$$

 $e^{-1}c_1 - ec_2 = -5.$

Solving, we find $c_1 = 0$ and $c_2 = 5e^{-1}$. The solution of the initial-value problem is $y = 5e^{-1}e^{-x} = 5e^{-1-x}$.

14. From the initial conditions we obtain

$$c_1 + c_2 = 0$$

 $c_1 - c_2 = 0.$

Solving, we find $c_1 = c_2 = 0$. The solution of the initial-value problem is y = 0.

- 15. Two solutions are y = 0 and $y = x^3$.
- 15. Two solutions are y = 0 and $y = x^2$. (Also, any constant multiple of x^2 is a solution.)
- For $f(x,y) = y^{2/3}$ we have $\frac{\partial f}{\partial y} = \frac{2}{3}y^{-1/3}$. Thus, the differential equation will have a unique solution in any rectangular region of the plane where $y \neq 0$.

11

- 18. For $f(x,y) = \sqrt{xy}$ we have $\partial f/\partial y = \frac{1}{2}\sqrt{x/y}$. Thus, the differential equation will have a unique solution in any region where x > 0 and y > 0 or where x < 0 and y < 0.
- 19. For $f(x,y) = \frac{y}{x}$ we have $\frac{\partial f}{\partial y} = \frac{1}{x}$. Thus, the differential equation will have a unique solution in any region where $x \neq 0$.
- 20. For f(x, y) = x + y we have $\frac{\partial f}{\partial y} = 1$. Thus, the differential equation will have a unique solution in the entire plane.
- 21. For $f(x,y) = x^2/(4-y^2)$ we have $\partial f/\partial y = 2x^2y/(4-y^2)^2$. Thus the differential equation will have a unique solution in any region where y < -2, -2 < y < 2, or y > 2.
- 22. For $f(x,y) = \frac{x^2}{1+y^3}$ we have $\frac{\partial f}{\partial y} = \frac{-3x^2y^2}{(1+y^3)^2}$. Thus, the differential equation will have a unique solution in any region where $y \neq -1$.
- **23.** For $f(x,y) = \frac{y^2}{x^2 + y^2}$ we have $\frac{\partial f}{\partial y} = \frac{2x^2y}{(x^2 + y^2)^2}$. Thus, the differential equation will have a unique solution in any region not containing (0,0).
- 24. For f(x,y) = (y+x)/(y-x) we have $\partial f/\partial y = -2x/(y-x)^2$. Thus the differential equation will have a unique solution in any region where y < x or where y > x.

In Problems 25-28 we identify $f(x,y) = \sqrt{y^2 - 9}$ and $\partial f/\partial y = y/\sqrt{y^2 - 9}$. We see that f and $\partial f/\partial y$ are both continuous in the regions of the plane determined by y < -3 and y > 3 with no restrictions on x.

- **25.** Since 4 > 3, (1, 4) is in the region defined by y > 3 and the differential equation has a unique solution through (1, 4).
- 26. Since (5,3) is not in either of the regions defined by y < -3 or y > 3, there is no guarantee of a unique solution through (5,3).
- 27. Since (2, -3) is not in either of the regions defined by y < -3 or y > 3, there is no guarantee of a unique solution through (2, -3).
- 28. Since (-1, 1) is not in either of the regions defined by y < -3 or y > 3, there is no guarantee of a unique solution through (-1, 1).
- **29.** (a) A one-parameter family of solutions is y = cx. Since y' = c, xy' = xc = y and $y(0) = c \cdot 0 = 0$.
 - (b) Writing the equation in the form y' = y/x, we see that R cannot contain any point on the y-axis. Thus, any rectangular region disjoint from the y-axis and containing (x_0, y_0) will determine an

12

interval around x_0 and a unique solution through (x_0, y_0) . Since $x_0 = 0$ in part (a), we are not guaranteed a unique solution through (0, 0).

- (c) The piecewise-defined function which satisfies y(0) = 0 is not a solution since it is not differentiable at x = 0.
- **30.** (a) Since $\frac{d}{dx} \tan(x+c) = \sec^2(x+c) = 1 + \tan^2(x+c)$, we see that $y = \tan(x+c)$ satisfies the differential equation.
 - (b) Solving $y(0) = \tan c = 0$ we obtain c = 0 and $y = \tan x$. Since $\tan x$ is discontinuous at $x = \pm \pi/2$, the solution is not defined on (-2, 2) because it contains $\pm \pi/2$.
 - (c) The largest interval on which the solution can exist is $(-\pi/2, \pi/2)$.
- **31.** (a) Since $\frac{d}{dx}\left(-\frac{1}{x+c}\right) = \frac{1}{(x+c)^2} = y^2$, we see that $y = -\frac{1}{x+c}$ is a solution of the differential equation.
 - (b) Solving y(0) = -1/c = 1 we obtain c = -1 and y = 1/(1-x). Solving y(0) = -1/c = -1 we obtain c = 1 and y = -1/(1+x). Being sure to include x = 0, we see that the interval of existence of y = 1/(1-x) is $(-\infty, 1)$, while the interval of existence of y = -1/(1+x) is $(-1, \infty)$.
 - (c) By inspection we see that y = 0 is a solution on $(-\infty, \infty)$.
- **32.** (a) Applying y(1) = 1 to y = -1/(x+c) gives

$$1 = -\frac{1}{1+c}$$
 or $1+c = -1$.

Thus c = -2 and

$$y = -\frac{1}{x-2} = \frac{1}{2-x}.$$

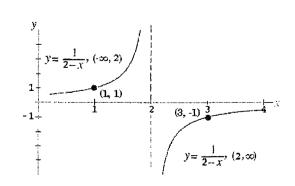
(b) Applying y(3) = -1 to y = -1/(x+c) gives

$$-1 = -\frac{1}{3+c}$$
 or $3+c=1$.

Thus c = -2 and

$$y = -\frac{1}{x-2} = \frac{1}{2-x}$$

(c) No, they are not the same solution. The interval I of definition for the solution in part (a) is (-∞, 2); whereas the interval I of definition for the solution in part (b) is (2,∞). See the figure.



Exercises 1.2 Initial-Value Problems

- **33.** (a) Differentiating $3x^2 y^2 = c$ we get 6x 2yy' = 0 or yy' = 3x.
 - (b) Solving $3x^2 y^2 = 3$ for y we get

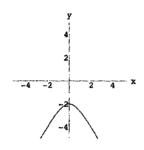
$$y = \phi_1(x) = \sqrt{3(x^2 - 1)}, \qquad 1 < x < \infty,$$

$$y = \phi_2(x) = -\sqrt{3(x^2 - 1)}, \qquad 1 < x < \infty,$$

$$y = \phi_3(x) = \sqrt{3(x^2 - 1)}, \qquad -\infty < x < -1,$$

$$y = \phi_4(x) = -\sqrt{3(x^2 - 1)}, \qquad -\infty < x < -1.$$

- (c) Only $y = \phi_3(x)$ satisfies y(-2) = 3.
- 34. (a) Setting x = 2 and y = -4 in $3x^2 y^2 = c$ we get 12 16 = -4 = c, so the explicit solution is
 - $y = -\sqrt{3x^2 + 4}, \quad -\infty < x < \infty.$ (b) Setting c = 0 we have $y = \sqrt{3}x$ and $y = -\sqrt{3}x$, both defined on $(-\infty, \infty).$



In Problems 35-38 we consider the points on the graphs with x-coordinates $x_0 = -1$, $x_0 = 0$, a $x_0 = 1$. The slopes of the tangent lines at these points are compared with the slopes given by $y'(x_0)$ (a) through (f).

- **35.** The graph satisfies the conditions in (b) and (f).
- **36.** The graph satisfies the conditions in (e).
- **37.** The graph satisfies the conditions in (c) and (d).
- **38.** The graph satisfies the conditions in (a).
- **39.** Integrating $y' = 8e^{2x} + 6x$ we obtain

$$y = \int (8e^{2x} + 6x)dx = 4e^{2x} + 3x^2 + c.$$

Setting x = 0 and y = 9 we have 9 = 4 + c so c = 5 and $y = 4e^{2x} + 3x^2 + 5$.

40. Integrating y'' = 12x - 2 we obtain

$$y' = \int (12x - 2)dx = 6x^2 - 2x + c_1.$$

Then, integrating y' we obtain

$$y = \int (6x^2 - 2x + c_1)dx = 2x^3 - x^2 + c_1x + c_2.$$

14

At x = 1 the y-coordinate of the point of tangency is y = -1+5 = 4. This gives the initial condition z = 4. The slope of the tangent line at x = 1 is y'(1) = -1. From the initial conditions we obtain

$$2-1+c_1+c_2=4$$
 or $c_1+c_2=3$

er i

 $6 - 2 + c_1 = -1$ or $c_1 = -5$.

Thus, $c_1 = -5$ and $c_2 = 8$, so $y = 2x^3 - x^2 - 5x + 8$.

- 41 When x = 0 and $y = \frac{1}{2}$, y' = -1, so the only plausible solution curve is the one with negative slope $x_1 = 0, \frac{1}{2}$, or the black curve.
- 42 If the solution is tangent to the x-axis at $(x_0, 0)$, then y' = 0 when $x = x_0$ and y = 0. Substituting these values into y' + 2y = 3x 6 we get $0 + 0 = 3x_0 6$ or $x_0 = 2$.
- 43. The theorem guarantees a unique (meaning single) solution through any point. Thus, there cannot the two distinct solutions through any point.

$$\frac{1}{44} \quad \text{when } y = \frac{1}{16}x^4, \ y' = \frac{1}{4}x^3 = x(\frac{1}{4}x^2) = xy^{1/2}, \text{ and } y(2) = \frac{1}{16}(16) = 1. \text{ When } y = \begin{cases} 0, & x < 0\\ \frac{1}{16}x^4, & x \ge 0 \end{cases}$$

TH have

$$y' = \begin{cases} 0, & x < 0\\ \frac{1}{4}x^3, & x \ge 0 \end{cases} = x \begin{cases} 0, & x < 0\\ \frac{1}{4}x^2, & x \ge 0 \end{cases} = x y^{1/2},$$

 $(1 \oplus 2) = \frac{1}{16}(16) = 1$. The two different solutions are the same on the interval $(0, \infty)$, which is all that is required by Theorem 1.2.1.

 $\pm \overline{z}$ at z = 0, dP/dt = 0.15P(0) + 20 = 0.15(100) + 20 = 35. Thus, the population is increasing at a rate of 3.500 individuals per year.

If the population is 500 at time t = T then

$$\left. \frac{dP}{dt} \right|_{t=T} = 0.15P(T) + 20 = 0.15(500) + 20 = 95.$$

Thus, at this time, the population is increasing at a rate of 9,500 individuals per year.

Exercises 1.3 Differential Equations as Mathematical Models

Exercises 1.3 Differential Equations as Mathematical Models

1.
$$\frac{dP}{dt} = kP + r;$$
 $\frac{dP}{dt} = kP - r$

- 2. Let b be the rate of births and d the rate of deaths. Then $b = k_1 P$ and $d = k_2 P$. Since dP/dt = b-d, the differential equation is $dP/dt = k_1 P k_2 P$.
- **3.** Let b be the rate of births and d the rate of deaths. Then $b = k_1 P$ and $d = k_2 P^2$. Since dP/dt = b-d, the differential equation is $dP/dt = k_1 P k_2 P^2$.
- 4. $\frac{dP}{dt} = k_1 P k_2 P^2 h, \ h > 0$
- 5. From the graph in the text we estimate $T_0 = 180^{\circ}$ and $T_m = 75^{\circ}$. We observe that when T = 85, $dT/dt \approx -1$. From the differential equation we then have

$$k = \frac{dT/dt}{T - T_m} = \frac{-1}{85 - 75} = -0.1.$$

6. By inspecting the graph in the text we take T_m to be $T_m(t) = 80 - 30 \cos \pi t/12$. Then the temperature of the body at time t is determined by the differential equation

$$\frac{dT}{dt} = k \left[T - \left(80 - 30 \cos \frac{\pi}{12} t \right) \right], \quad t > 0.$$

- 7. The number of students with the flu is x and the number not infected is 1000 x, so dx/dt = kx(1000 x).
- 8. By analogy, with the differential equation modeling the spread of a disease, we assume that the rate at which the technological innovation is adopted is proportional to the number of people who have adopted the innovation and also to the number of people, y(t), who have not yet adopted it. Then x + y = n, and assuming that initially one person has adopted the innovation, we have

$$\frac{dx}{dt} = kx(n-x), \quad x(0) = 1.$$

9. The rate at which salt is leaving the tank is

$$R_{out}$$
 (3 gal/min) $\cdot \left(\frac{A}{300} \text{ lb/gal}\right) = \frac{A}{100} \text{ lb/min.}$

Thus dA/dt = -A/100 (where the minus sign is used since the amount of salt is decreasing. The initial amount is A(0) = 50.

10. The rate at which salt is entering the tank is

$$R_{in} = (3 \text{ gal/min}) \cdot (2 \text{ lb/gal}) = 6 \text{ lb/min}.$$

Since the solution is pumped out at a slower rate, it is accumulating at the rate of (3-2)gal/min = 1 gal/min. After t minutes there are 300 + t gallons of brine in the tank. The rate at which salt is leaving is

$$R_{out} = (2 \text{ gal/min}) \cdot \left(\frac{A}{300+t} \text{ lb/gal}\right) = \frac{2A}{300+t} \text{ lb/min}.$$

The differential equation is

$$\frac{dA}{dt} = 6 - \frac{2A}{300+t}$$

11. The rate at which salt is entering the tank is

$$R_{in} = (3 \text{ gal/min}) \cdot (2 \text{ lb/gal}) = 6 \text{ lb/min}$$

Since the tank loses liquid at the net rate of

$$3 \text{ gal/min} - 3.5 \text{ gal/min} = -0.5 \text{ gal/min},$$

after t minutes the number of gallons of brine in the tank is $300 - \frac{1}{2}t$ gallons. Thus the rate at which salt is leaving is

$$R_{out} = \left(\frac{A}{300 - t/2} \text{ lb/gal}\right) \cdot (3.5 \text{ gal/min}) = \frac{3.5A}{300 - t/2} \text{ lb/min} = \frac{7A}{600 - t} \text{ lb/min}.$$

The differential equation is

$$\frac{dA}{dt} = 6 - \frac{7A}{600 - t}$$
 or $\frac{dA}{dt} + \frac{7}{600 - t}A = 6$

12. The rate at which salt is entering the tank is

 $R_{in} = (c_{in} \text{ lb/gal}) \cdot (r_{in} \text{ gal/min}) = c_{in}r_{in} \text{ lb/min}.$

Now let A(t) denote the number of pounds of salt and N(t) the number of gallons of brine in the tank at time t. The concentration of salt in the tank as well as in the outflow is c(t) = x(t)/N(t). But the number of gallons of brine in the tank remains steady, is increased, or is decreased depending on whether $r_{in} = r_{out}$, $r_{in} > r_{out}$, or $r_{in} < r_{out}$. In any case, the number of gallons of brine in the tank at time t is $N(t) = N_0 + (r_{in} - r_{out})t$. The output rate of salt is then

$$R_{out} = \left(\frac{A}{N_0 + (r_{in} - r_{out})t} \text{ lb/gal}\right) \cdot (r_{out} \text{ gal/min}) = r_{out} \frac{A}{N_0 + (r_{in} - r_{out})t} \text{ lb/min}$$

The differential equation for the amount of salt, $dA/dt = R_{in} - R_{out}$, is

$$\frac{dA}{dt} = c_{in}r_{in} - r_{out} \frac{A}{N_0 + (r_{in} - r_{out})t} \quad \text{or} \quad \frac{dA}{dt} + \frac{r_{out}}{N_0 + (r_{in} - r_{out})t} A = c_{in}r_{in}.$$

13. The volume of water in the tank at time t is $V = A_w h$. The differential equation is then

$$\frac{dh}{dt} = \frac{1}{A_w} \frac{dV}{dt} = \frac{1}{A_w} \left(-cA_h \sqrt{2gh} \right) = -\frac{cA_h}{A_w} \sqrt{2gh} \,.$$

Exercises 1.3 Differential Equations as Mathematical Models

Using
$$A_h = \pi \left(\frac{2}{12}\right)^2 = \frac{\pi}{36}$$
, $A_w = 10^2 = 100$, and $g = 32$, this becomes
$$\frac{dh}{dt} = -\frac{c\pi/36}{100}\sqrt{64h} = -\frac{c\pi}{450}\sqrt{h}.$$

14. The volume of water in the tank at time t is $V = \frac{1}{3}\pi r^2 h$ where r is the radius of the tank at height h. From the figure in the text we see that r/h = 8/20 so that $r = \frac{2}{5}h$ and $V = \frac{1}{3}\pi \left(\frac{2}{5}h\right)^2 h = \frac{4}{75}\pi h^3$. Differentiating with respect to t we have $dV/dt = \frac{4}{25}\pi h^2 dh/dt$ or

$$\frac{dh}{dt} = \frac{25}{4\pi h^2} \frac{dV}{dt}$$

From Problem 13 we have $dV/dt = -cA_h\sqrt{2gh}$ where c = 0.6, $A_h = \pi \left(\frac{2}{12}\right)^2$, and g = 32. Thus $dV/dt = -2\pi\sqrt{h}/15$ and

$$\frac{dh}{dt} = \frac{25}{4\pi h^2} \left(-\frac{2\pi\sqrt{h}}{15} \right) = -\frac{5}{6h^{3/2}}$$

- 15. Since i = dq/dt and $L d^2 q/dt^2 + R dq/dt = E(t)$, we obtain L di/dt + Ri = E(t).
- 16. By Kirchhoff's second law we obtain $R\frac{dq}{dt} + \frac{1}{C}q = E(t)$.
- 17. From Newton's second law we obtain $m\frac{dv}{dt} = -kv^2 + mg$.
- 18. Since the barrel in Figure 1.3.16(b) in the text is submerged an additional y feet below its equilibrium position the number of cubic feet in the additional submerged portion is the volume of the circular cylinder: $\pi \times (\text{radius})^2 \times \text{height or } \pi(s/2)^2 y$. Then we have from Archimedes' principle

upward force of water on barrel = weight of water displaced

 $= (62.4) \times (\text{volume of water displaced})$

$$= (62.4)\pi(s/2)^2 y = 15.6\pi s^2 y.$$

It then follows from Newton's second law that

$$rac{w}{g}rac{d^2y}{dt^2} = -15.6\pi s^2 y \qquad ext{or} \qquad rac{d^2y}{dt^2} + rac{15.6\pi s^2 g}{w}\,y = 0,$$

where g = 32 and w is the weight of the barrel in pounds.

19. The net force acting on the mass is

$$F = ma = m \frac{d^2x}{dt^2} = -k(s+x) + mg = -kx + mg - ks.$$

Since the condition of equilibrium is mg = ks, the differential equation is

$$m\frac{d^2x}{dt^2} = -kx.$$

18

20. From Problem 19, without a damping force, the differential equation is $m d^2x/dt^2 = -kx$. With a damping force proportional to velocity, the differential equation becomes

$$m \frac{d^2x}{dt^2} = -kx - \beta \frac{dx}{dt}$$
 or $m \frac{d^2x}{dt^2} + \beta \frac{dx}{dt} + kx = 0.$

21. From $g = k/R^2$ we find $k = gR^2$. Using $a = d^2r/dt^2$ and the fact that the positive direction is upward we get

$$\frac{d^2r}{dt^2} = -a = -\frac{k}{r^2} = -\frac{gR^2}{r^2}$$
 or $\frac{d^2r}{dt^2} + \frac{gR^2}{r^2} = 0.$

22. The gravitational force on m is $F = -kM_rm/r^2$. Since $M_r = 4\pi\delta r^3/3$ and $M = 4\pi\delta R^3/3$ we have $M_r = r^3M/R^3$ and

$$F = -k \frac{M_r m}{r^2} = -k \frac{r^3 M m / R^3}{r^2} = -k \frac{m M}{R^3} r.$$

Now from $F = ma = d^2r/dt^2$ we have

$$m \frac{d^2 r}{dt^2} = -k \frac{mM}{R^3} r$$
 or $\frac{d^2 r}{dt^2} = -\frac{kM}{R^3} r$.

- 23. The differential equation is $\frac{dA}{dt} = k(M A)$.
- 24. The differential equation is $\frac{dA}{dt} = k_1(M-A) k_2A$.
- 25. The differential equation is x'(t) = r kx(t) where k > 0.
- 26. By the Pythagorean Theorem the slope of the tangent line is $y' = \frac{-y}{\sqrt{s^2 y^2}}$.
- **27.** We see from the figure that $2\theta + \alpha = \pi$. Thus

$$\frac{y}{-x} = \tan \alpha = \tan(\pi - 2\theta) = -\tan 2\theta = -\frac{2\tan\theta}{1 - \tan^2\theta}$$

Since the slope of the tangent line is $y' = \tan \theta$ we have $y/x = 2y'/[1-(y')^2]$ or $y - y(y')^2 = 2xy'$, which is the quadratic equation $y(y')^2 + 2xy' - y = 0$ in y'. Using the quadratic formula, we get

$$y' = \frac{-2x \pm \sqrt{4x^2 + 4y^2}}{2y} = \frac{-x \pm \sqrt{x^2 + y^2}}{y}.$$

Since dy/dx > 0, the differential equation is

$$\frac{dy}{dx} = \frac{-x + \sqrt{x^2 + y^2}}{y}$$
 or $y \frac{dy}{dx} - \sqrt{x^2 + y^2} + x = 0.$

The differential equation is dP/dt = kP, so from Problem 41 in Exercises 1.1, $P = e^{kt}$, and a me-parameter family of solutions is $P = ce^{kt}$.

Exercises 1.3 Differential Equations as Mathematical Models

- **29.** The differential equation in (3) is $dT/dt = k(T T_m)$. When the body is cooling, $T > T_m$, so $T T_m > 0$. Since T is decreasing, dT/dt < 0 and k < 0. When the body is warming, $T < T_m$, so $T T_m < 0$. Since T is increasing, dT/dt > 0 and k < 0.
- **30.** The differential equation in (8) is dA/dt = 6 A/100. If A(t) attains a maximum, then dA/dt = 0 at this time and A = 600. If A(t) continues to increase without reaching a maximum, then A'(t) > 0 for t > 0 and A cannot exceed 600. In this case, if A'(t) approaches 0 as t increases to infinity, we see that A(t) approaches 600 as t increases to infinity.
- 31. This differential equation could describe a population that undergoes periodic fluctuations.
- 32. (a) As shown in Figure 1.3.22(b) in the text, the resultant of the reaction force of magnitude F and the weight of magnitude mg of the particle is the centripetal force of magnitude $m\omega^2 x$. The centripetal force points to the center of the circle of radius x on which the particle rotates about the y-axis. Comparing parts of similar triangles gives

$$F\cos\theta = mg$$
 and $F\sin\theta = m\omega^2 x$.

(b) Using the equations in part (a) we find

$$\tan \theta = \frac{F \sin \theta}{F \cos \theta} = \frac{m \omega^2 x}{mg} = \frac{\omega^2 x}{g} \quad \text{or} \quad \frac{dy}{dx} = \frac{\omega^2 x}{g}.$$

33. From Problem 21, $d^2r/dt^2 = -gR^2/r^2$. Since R is a constant, if r = R + s, then $d^2r/dt^2 = d^2s/dt^2$ and, using a Taylor series, we get

$$\frac{d^2s}{dt^2} = -g\frac{R^2}{(R+s)^2} = -gR^2(R+s)^{-2} \approx -gR^2[R^{-2} - 2sR^{-3} + \cdots] = -g + \frac{2gs}{R^3} + \cdots$$

Thus, for R much larger than s, the differential equation is approximated by $d^2s/dt^2 = -g$. 34. (a) If ρ is the mass density of the raindrop, then $m = \rho V$ and

$$\frac{dm}{dt} = \rho \frac{dV}{dt} = \rho \frac{d}{dt} \left[\frac{4}{3}\pi r^3\right] = \rho \left(4\pi r^2 \frac{dr}{dt}\right) = \rho S \frac{dr}{dt}.$$

If dr/dt is a constant, then dm/dt = kS where $\rho dr/dt = k$ or $dr/dt = k/\rho$. Since the radius is decreasing, k < 0. Solving $dr/dt = k/\rho$ we get $r = (k/\rho)t + c_0$. Since $r(0) = r_0$, $c_0 = r_0$ and $r = kt/\rho + r_0$.

(b) From Newton's second law, $\frac{d}{dt}[mv] = mg$, where v is the velocity of the raindrop. Then

$$m \frac{dv}{dt} + v \frac{dm}{dt} = mg$$
 or $\rho\left(\frac{4}{3}\pi r^3\right)\frac{dv}{dt} + v(k4\pi r^2) = \rho\left(\frac{4}{3}\pi r^3\right)g.$

Dividing by $4\rho\pi r^3/3$ we get

$$\frac{dv}{dt} + \frac{3k}{\rho r}v = g \qquad \text{or} \qquad \frac{dv}{dt} + \frac{3k/\rho}{kt/\rho + r_0}v = g, \ k < 0$$

35. We assume that the plow clears snow at a constant rate of k cubic miles per hour. Let t be the time in hours after noon, x(t) the depth in miles of the snow at time t, and y(t) the distance the plow has moved in t hours. Then dy/dt is the velocity of the plow and the assumption gives

$$wx\frac{dy}{dt} = k,$$

where w is the width of the plow. Each side of this equation simply represents the volume of snow plowed in one hour. Now let t_0 be the number of hours before noon when it started snowing and let s be the constant rate in miles per hour at which x increases. Then for $t > -t_0$, $x = s(t + t_0)$. The differential equation then becomes

$$\frac{dy}{dt} = \frac{k}{ws} \frac{1}{t+t_0}.$$

Integrating, we obtain

$$y = \frac{k}{ws} \left[\ln(t + t_0) + c \right]$$

where c is a constant. Now when t = 0, y = 0 so $c = -\ln t_0$ and

$$y = \frac{k}{ws} \ln\left(1 + \frac{t}{t_0}\right).$$

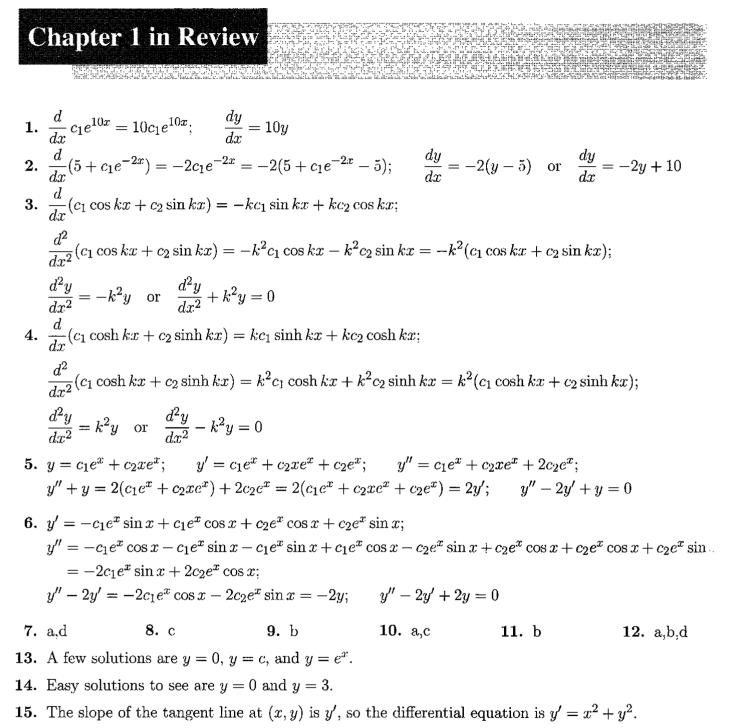
Finally, from the fact that when t = 1, y = 2 and when t = 2, y = 3, we obtain

$$\left(1+\frac{2}{t_0}\right)^2 = \left(1+\frac{1}{t_0}\right)^3.$$

Expanding and simplifying gives $t_0^2 + t_0 - 1 = 0$. Since $t_0 > 0$, we find $t_0 \approx 0.618$ hours \approx 37 minutes. Thus it started snowing at about 11:23 in the morning.

36. (1):
$$\frac{dP}{dt} = kP$$
 is linear
(3): $\frac{dT}{dt} = k(T - T_m)$ is linear
(6): $\frac{dX}{dt} = k(\alpha - X)(\beta - X)$ is nonlinear
(10): $\frac{dh}{dt} = -\frac{A_h}{A_w}\sqrt{2gh}$ is nonlinear
(11): $L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{1}{C}q = E(t)$ is linear
(12): $\frac{d^2s}{dt^2} = -g$ is linear
(13): $m\frac{d^2s}{dt^2} + k\frac{ds}{dt} = mg$ is linear

(16): linearity or nonlinearity is determined by the manner in which W and T_1 involve x.



- 16. The rate at which the slope changes is dy'/dx = y'', so the differential equation is $y'' = -y' \subset y'' + y' = 0$.
- 17. (a) The domain is all real numbers.
 - (b) Since $y' = 2/3x^{1/3}$, the solution $y = x^{2/3}$ is undefined at x = 0. This function is a solution \cdots the differential equation on $(-\infty, 0)$ and also on $(0, \infty)$.

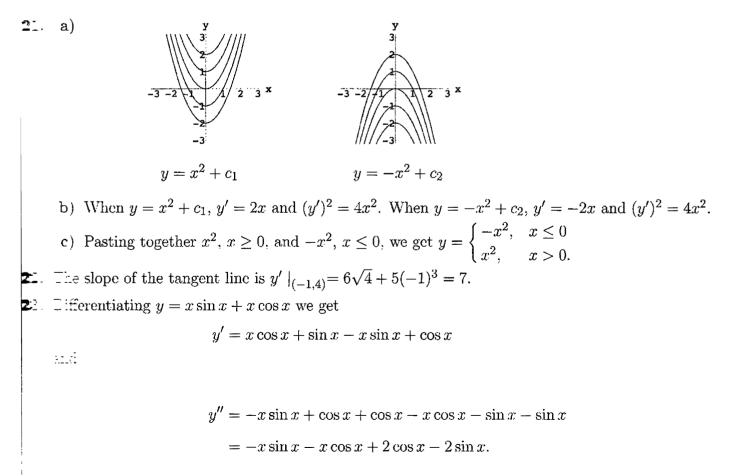
22

- 15. (a) Differentiating $y^2 2y = x^2 x + c$ we obtain 2yy' 2y' = 2x 1 or (2y 2)y' = 2x 1.
 - (b) Setting x = 0 and y = 1 in the solution we have 1 2 = 0 0 + c or c = -1. Thus, a solution of the initial-value problem is $y^2 2y = x^2 x 1$.
 - (c) Solving $y^2 2y (x^2 x 1) = 0$ by the quadratic formula we get $y = (2 \pm \sqrt{4 + 4(x^2 x 1)})/2$ = $1 \pm \sqrt{x^2 - x} = 1 \pm \sqrt{x(x - 1)}$. Since $x(x - 1) \ge 0$ for $x \le 0$ or $x \ge 1$, we see that neither $y = 1 + \sqrt{x(x - 1)}$ nor $y = 1 - \sqrt{x(x - 1)}$ is differentiable at x = 0. Thus, both functions are solutions of the differential equation, but neither is a solution of the initial-value problem.
- 19. Setting $x = x_0$ and y = 1 in y = -2/x + x, we get

$$1 = -\frac{2}{x_0} + x_0$$
 or $x_0^2 - x_0 - 2 = (x_0 - 2)(x_0 + 1) = 0.$

Thus, $x_0 = 2$ or $x_0 = -1$. Since x = 0 in y = -2/x + x, we see that y = -2/x + x is a solution of the initial-value problem xy' + y = 2x, y(-1) = 1, on the interval $(-\infty, 0)$ and y = -2/x + x is a solution of the initial-value problem xy' + y = 2x, y(2) = 1, on the interval $(0, \infty)$.

21. From the differential equation, $y'(1) = 1^2 + [y(1)]^2 = 1 + (-1)^2 = 2 > 0$, so y(x) is increasing in some neighborhood of x = 1. From y'' = 2x + 2yy' we have y''(1) = 2(1) + 2(-1)(2) = -2 < 0, so (x, x) is concave down in some neighborhood of x = 1.



Thus

$$y'' + y = -x\sin x - x\cos x + 2\cos x - 2\sin x + x\sin x + x\cos x = 2\cos x - 2\sin x.$$

An interval of definition for the solution is $(-\infty, \infty)$.

24. Differentiating $y = x \sin x + (\cos x) \ln(\cos x)$ we get

$$y' = x \cos x + \sin x + \cos x \left(\frac{-\sin x}{\cos x}\right) - (\sin x) \ln(\cos x)$$
$$= x \cos x + \sin x - \sin x - (\sin x) \ln(\cos x)$$
$$= x \cos x - (\sin x) \ln(\cos x)$$

and

$$y'' = -x\sin x + \cos x - \sin x \left(\frac{-\sin x}{\cos x}\right) - (\cos x)\ln(\cos x)$$
$$= -x\sin x + \cos x + \frac{\sin^2 x}{\cos x} - (\cos x)\ln(\cos x)$$
$$= -x\sin x + \cos x + \frac{1 - \cos^2 x}{\cos x} - (\cos x)\ln(\cos x)$$
$$= -x\sin x + \cos x + \sec x - \cos x - (\cos x)\ln(\cos x)$$
$$= -x\sin x + \sec x - (\cos x)\ln(\cos x).$$

Thus

$$y'' + y = -x\sin x + \sec x - (\cos x)\ln(\cos x) + x\sin x + (\cos x)\ln(\cos x) = \sec x.$$

To obtain an interval of definition we note that the domain of $\ln x$ is $(0, \infty)$, so we must have $\cos x > 0$. Thus, an interval of definition is $(-\pi/2, \pi/2)$.

25. Differentiating $y = \sin(\ln x)$ we obtain $y' = \cos(\ln x)/x$ and $y'' = -[\sin(\ln x) + \cos(\ln x)]/x^2$. Then

$$x^{2}y'' + xy' + y = x^{2}\left(-\frac{\sin(\ln x) + \cos(\ln x)}{x^{2}}\right) + x\frac{\cos(\ln x)}{x} + \sin(\ln x) = 0.$$

An interval of definition for the solution is $(0, \infty)$.

26. Differentiating $y = \cos(\ln x) \ln(\cos(\ln x)) + (\ln x) \sin(\ln x)$ we obtain

$$y' = \cos(\ln x) \frac{1}{\cos(\ln x)} \left(-\frac{\sin(\ln x)}{x} \right) + \ln(\cos(\ln x)) \left(-\frac{\sin(\ln x)}{x} \right) + \ln x \frac{\cos(\ln x)}{x} + \frac{\sin(\ln x)}{x}$$
$$= -\frac{\ln(\cos(\ln x))\sin(\ln x)}{x} + \frac{(\ln x)\cos(\ln x)}{x}$$

and

$$y'' = -x \left[\ln(\cos(\ln x)) \frac{\cos(\ln x)}{x} + \sin(\ln x) \frac{1}{\cos(\ln x)} \left(-\frac{\sin(\ln x)}{x} \right) \right] \frac{1}{x^2} + \ln(\cos(\ln x)) \sin(\ln x) \frac{1}{x^2} + x \left[(\ln x) \left(-\frac{\sin(\ln x)}{x} \right) + \frac{\cos(\ln x)}{x} \right] \frac{1}{x^2} - (\ln x) \cos(\ln x) \frac{1}{x^2} = \frac{1}{x^2} \left[-\ln(\cos(\ln x)) \cos(\ln x) + \frac{\sin^2(\ln x)}{\cos(\ln x)} + \ln(\cos(\ln x)) \sin(\ln x) \right. - (\ln x) \sin(\ln x) + \cos(\ln x) - (\ln x) \cos(\ln x) \right].$$

Then

$$\begin{aligned} x^2 y'' + xy' + y &= -\ln(\cos(\ln x))\cos(\ln x) + \frac{\sin^2(\ln x)}{\cos(\ln x)} + \ln(\cos(\ln x))\sin(\ln x) - (\ln x)\sin(\ln x) \\ &+ \cos(\ln x) - (\ln x)\cos(\ln x) - \ln(\cos(\ln x))\sin(\ln x) \\ &+ (\ln x)\cos(\ln x) + \cos(\ln x)\ln(\cos(\ln x)) + (\ln x)\sin(\ln x) \\ &= \frac{\sin^2(\ln x)}{\cos(\ln x)} + \cos(\ln x) = \frac{\sin^2(\ln x) + \cos^2(\ln x)}{\cos(\ln x)} = \frac{1}{\cos(\ln x)} = \sec(\ln x). \end{aligned}$$

To obtain an interval of definition, we note that the domain of $\ln x$ is $(0, \infty)$, so we must have $\cos(\ln x) > 0$. Since $\cos x > 0$ when $-\pi/2 < x < \pi/2$, we require $-\pi/2 < \ln x < \pi/2$. Since e^x is an increasing function, this is equivalent to $e^{-\pi/2} < x < e^{\pi/2}$. Thus, an interval of definition is $e^{-\pi/2}, e^{\pi/2}$. (Much of this problem is more easily done using a computer algebra system such as *Mathematica* or *Maple*.)

- : Problems 27 30 we have $y' = 3c_1e^{3x} c_2e^{-x} 2$.
- 2^{-1} . The initial conditions imply

$$c_1 + c_2 = 0$$
$$3c_1 - c_2 - 2 = 0,$$

so
$$c_1 = \frac{1}{2}$$
 and $c_2 = -\frac{1}{2}$. Thus $y = \frac{1}{2}e^{3x} - \frac{1}{2}e^{-x} - 2x$.

L: The initial conditions imply

$$c_1 + c_2 = 1$$

 $3c_1 - c_2 - 2 = -3$,

 $v_{1} = 0$ and $c_{2} = 1$. Thus $y = e^{-x} - 2x$.

29. The initial conditions imply

$$c_1e^3 + c_2e^{-1} - 2 = 4$$

 $3c_1e^3 - c_2e^{-1} - 2 = -2,$
so $c_1 = \frac{3}{2}e^{-3}$ and $c_2 = \frac{9}{2}e$. Thus $y = \frac{3}{2}e^{3x-3} + \frac{9}{2}e^{-x+1} - 2x.$

30. The initial conditions imply

$$c_1e^{-3} + c_2e + 2 = 0$$

$$3c_1e^{-3} - c_2e - 2 = 1,$$

so $c_1 = \frac{1}{4}e^3$ and $c_2 = -\frac{9}{4}e^{-1}$. Thus $y = \frac{1}{4}e^{3x+3} - \frac{9}{4}e^{-x-1} - 2x.$

31. From the graph we see that estimates for y_0 and y_1 are $y_0 = -3$ and $y_1 = 0$.

32. The differential equation is

$$\frac{dh}{dt} = -\frac{cA_0}{A_w}\sqrt{2gh} \,.$$

Using $A_0 = \pi (1/24)^2 = \pi/576$, $A_w = \pi (2)^2 = 4\pi$, and g = 32, this becomes

$$\frac{dh}{dt} = -\frac{c\pi/576}{4\pi}\sqrt{64h} = \frac{c}{288}\sqrt{h}\,.$$

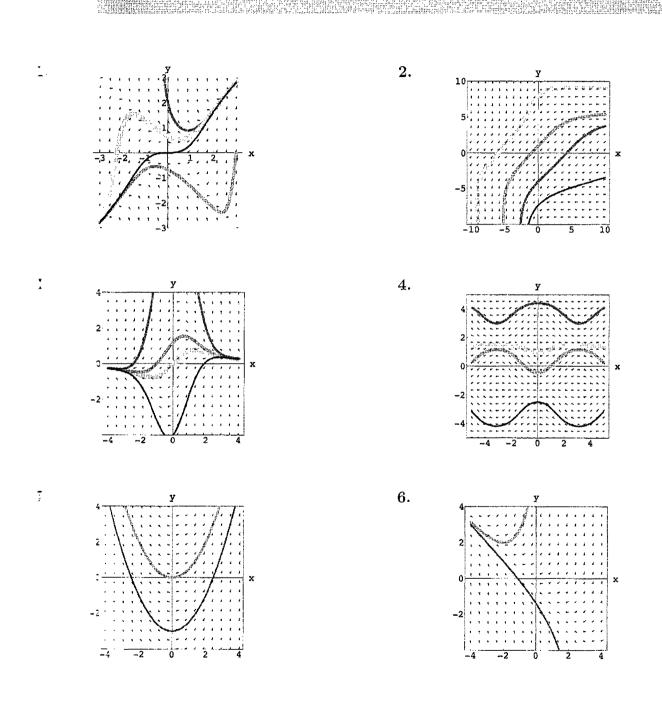
33. Let P(t) be the number of owls present at time t. Then dP/dt = k(P - 200 + 10t). **34.** Setting A'(t) = -0.002 and solving A'(t) = -0.0004332A(t) for A(t), we obtain

$$A(t) = \frac{A'(t)}{-0.0004332} = \frac{-0.002}{-0.0004332} \approx 4.6 \text{ grams.}$$

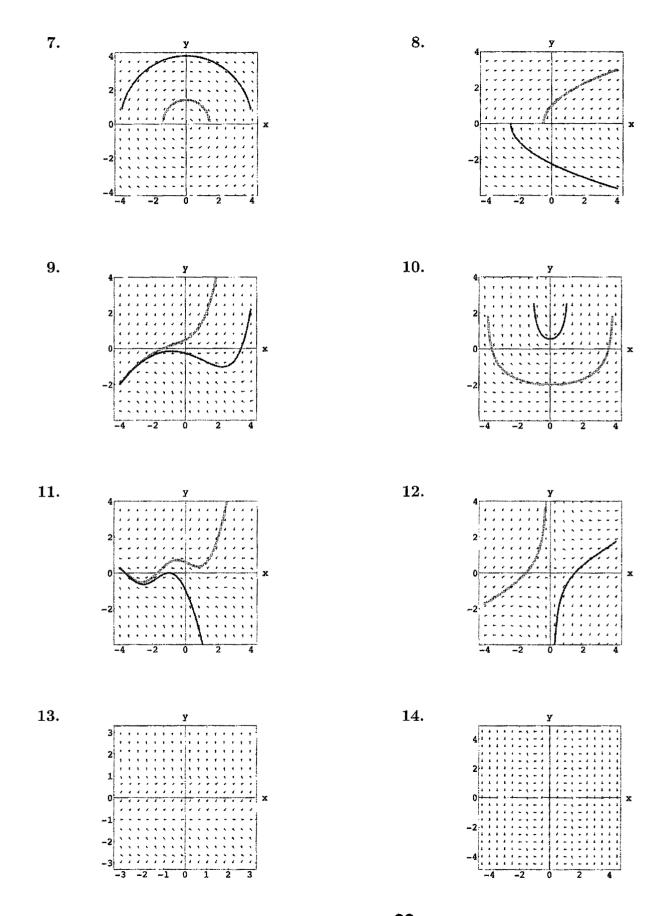
2 First-Order Differential Equations

Exercises 2.1

Solution Curves Without a Solution

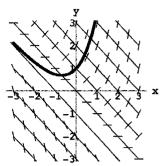


27



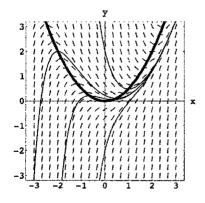
28 http://profesoresparticulareslima.blogspot.pe/

15 a The isoclines have the form y = -x + c, which are straight lines with slope -1.

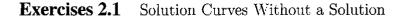


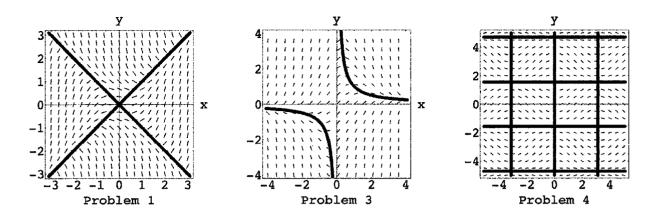
b The isoclines have the form $x^2 + y^2 = c$, which are circles centered at the origin.

- 1.1 a. When x = 0 or y = 4, dy/dx = -2 so the lineal elements have slope -2. When y = 3 or y = 5, dy/dx = x 2, so the lineal elements at (x, 3) and (x, 5) have slopes x 2.
 - b. At $(0, y_0)$ the solution curve is headed down. If $y \to \infty$ as x increases, the graph must eventually turn around and head up, but while heading up it can never cross y = 4 where a tangent line to a solution curve must have slope -2. Thus, y cannot approach ∞ as x approaches ∞ .
- 1. When $y < \frac{1}{2}x^2$, $y' = x^2 2y$ is positive and the portions of solution curves "outside" the nullcline parabola are increasing. When $> \frac{1}{2}x^2$, $y' = x^2 - 2y$ is negative and the portions of the solution turves "inside" the nullcline parabola are decreasing.

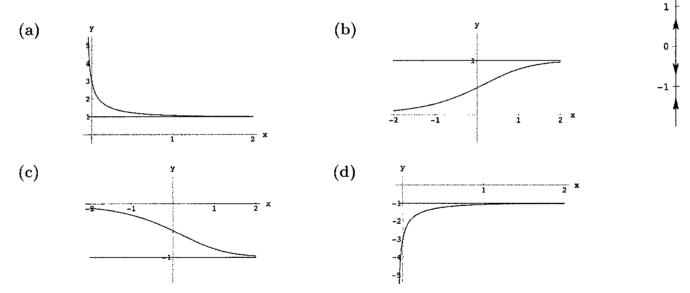


1. Any horizontal lineal element should be at a point on a nullcline. In Problem 1 the nullclines are $x^2 - y^2 = 0$ or $y = \pm x$. In Problem 3 the nullclines are 1 - xy = 0 or y = 1/x. In Problem 4 the nullclines are $(\sin x) \cos y = 0$ or $x = n\pi$ and $y = \pi/2 + n\pi$, where n is an integer. The graphs on the next page show the nullclines for the differential equations in Problems 1, 3, and 4 superimposed on the corresponding direction field.

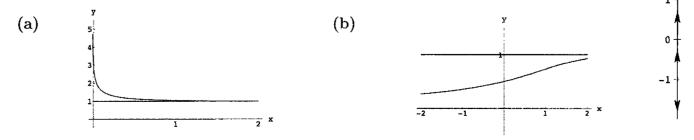




- (b) An autonomous first-order differential equation has the form y' = f(y). Nullclines have the form y = c where f(c) = 0. These are the graphs of the equilibrium solutions of the differential equation.
- 19. Writing the differential equation in the form dy/dx = y(1-y)(1+y) we see that critical points are located at y = -1, y = 0, and y = 1. The phase portrait is shown at the right.



20. Writing the differential equation in the form $dy/dx = y^2(1-y)(1+y)$ we see that critical points are located at y = -1, y = 0, and y = 1. The phase portrait is shown at the right.



30 http://profesoresparticulareslima.blogspot.pe/

з

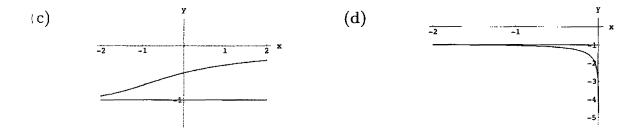
0

1

0

2

-2



21. Solving $y^2 - 3y = y(y - 3) = 0$ we obtain the critical points 0 and 3. From the phase portrait we see that 0 is asymptotically stable (attractor) and 3 is unstable (repeller).

Solving $y^2 - y^3 = y^2(1 - y) = 0$ we obtain the critical points 0 and 1. From the phase partrait we see that 1 is asymptotically stable (attractor) and 0 is semi-stable.

If. Solving $(y-2)^4 = 0$ we obtain the critical point 2. From the phase portrait we see that 1 is semi-stable.

L= Solving $10 + 3y - y^2 = (5 - y)(2 + y) = 0$ we obtain the critical points -2 and 5. From the phase portrait we see that 5 is asymptotically stable (attractor) and -2 is unstable repeller).

25. Solving $y^2(4-y^2) = y^2(2-y)(2+y) = 0$ we obtain the critical points -2, 0, and 2. From the phase portrait we see that 2 is asymptotically stable (attractor), 0 is semi-stable, and -2 is unstable (repeller).

26. Solving y(2-y)(4-y) = 0 we obtain the critical points 0, 2, and 4. From the phase portrait we see that 2 is asymptotically stable (attractor) and 0 and 4 are unstable (repellers).

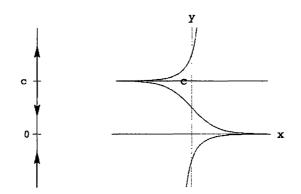
27. Solving $y \ln(y+2) = 0$ we obtain the critical points -1 and 0. From the phase portrait we see that -1 is asymptotically stable (attractor) and 0 is unstable (repeller).

28. Solving $ye^y - 9y = y(e^y - 9) = 0$ we obtain the critical points 0 and ln 9. From the phase portrait we see that 0 is asymptotically stable (attractor) and ln 9 is unstable (repeller).

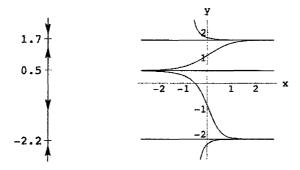
29. The critical points are 0 and c because the graph of f(y) is 0 at these points. Since f(y) > 0 for y < 0 and y > c, the graph of the solution is increasing on $(-\infty, 0)$ and (c, ∞) . Since f(y) < 0 for 0 < y < c, the graph of the solution is decreasing on (0, c).

ln 9

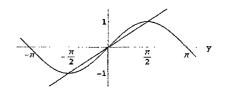
0



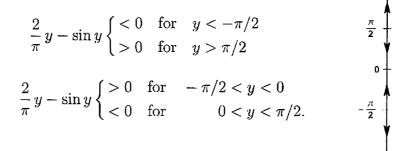
11 The critical points are approximately at -2, 2, 0.5, and 1.7. Since f(y) > 0 for y < -2.2 and 1.5 < y < 1.7, the graph of the solution is increasing on $(-\infty, -2.2)$ and (0.5, 1.7). Since f(y) < 0 for -2.2 < y < 0.5 and y > 1.7, the graph is decreasing on (-2.2, 0.5) and $(1.7, \infty)$.



11 From the graphs of $z = \pi/2$ and $z = \sin y$ we see that $-2 \cdot y - \sin y = 0$ has only three solutions. By inspection $-2 \cdot y - \sin y = 0$ has are $-\pi/2$, 0, and $\pi/2$.



Firm the graph at the right we see that



- The mables us to construct the phase portrait shown at the right. From this portrait we see that $\tau \perp \text{and } -\pi/2$ are unstable (repellers), and 0 is asymptotically stable (attractor).
- dx = 0 every real number is a critical point, and hence all critical points are nonisolated.
- That for dy/dx = f(y) we are assuming that f and f' are continuous functions of y on

Exercises 2.1 Solution Curves Without a Solution

some interval I. Now suppose that the graph of a nonconstant solution of the differential equation crosses the line y = c. If the point of intersection is taken as an initial condition we have two distinct solutions of the initial-value problem. This violates uniqueness, so the graph of any nonconstant solution must lie entirely on one side of any equilibrium solution. Since f is continuous it can only change signs at a point where it is 0. But this is a critical point. Thus, f(y) is completely positive or completely negative in each region R_i . If y(x) is oscillatory or has a relative extremum, then it must have a horizontal tangent line at some point (x_0, y_0) . In this case y_0 would be a critical point of the differential equation, but we saw above that the graph of a nonconstant solution cannot intersect the graph of the equilibrium solution $y = y_0$.

34. By Problem 33, a solution y(x) of dy/dx = f(y) cannot have relative extrema and hence must be monotone. Since y'(x) = f(y) > 0, y(x) is monotone increasing, and since y(x) is bounded above by c₂, lim_{x→∞} y(x) = L, where L ≤ c₂. We want to show that L = c₂. Since L is a horizontal asymptote of y(x), lim_{x→∞} y'(x) = 0. Using the fact that f(y) is continuous we have

$$f(L) = f(\lim_{x \to \infty} y(x)) = \lim_{x \to \infty} f(y(x)) = \lim_{x \to \infty} y'(x) = 0$$

But then L is a critical point of f. Since $c_1 < L \leq c_2$, and f has no critical points between c_1 and c_2 , $L = c_2$.

- **35.** Assuming the existence of the second derivative, points of inflection of y(x) occur where y''(x) = 0. From dy/dx = f(y) we have $d^2y/dx^2 = f'(y) dy/dx$. Thus, the y-coordinate of a point of inflection can be located by solving f'(y) = 0. (Points where dy/dx = 0 correspond to constant solutions of the differential equation.)
- **36.** Solving $y^2 y 6 = (y 3)(y + 2) = 0$ we see that 3 and -2 are critical points. Now $d^2y/dx^2 = (2y 1) dy/dx = (2y 1)(y 3)(y + 2)$, so the only possible point of inflection is at $y = \frac{1}{2}$, although the concavity of solutions can be different on either side of y = -2 and y = 3. Since y''(x) < 0 for y < -2 and $\frac{1}{2} < y < 3$, and y''(x) > 0 for $-2 < y < \frac{1}{2}$ and y > 3, we see that solution curves are concave down for y < -2 and $\frac{1}{2} < y < 3$ and $-5 + \frac{1}{2} + \frac{$
- **37.** If (1) in the text has no critical points it has no constant solutions. The solutions have neither ... upper nor lower bound. Since solutions are monotonic, every solution assumes all real values.

34

b a

0

mg k

 $\sqrt{\frac{mg}{k}}$

- 35. The critical points are 0 and b/a. From the phase portrait we see that 0 is an attractor and b/a is a repeller. Thus, if an initial population satisfies $P_0 > b/a$, the population becomes unbounded as t increases, most probably in finite time, i.e. $P(t) \to \infty$ as $t \to T$. If $0 < P_0 < b/a$, then the population eventually dies out, that is, $P(t) \to 0$ as $t \to \infty$. Since population P > 0 we do not consider the case $P_0 < 0$.
- The only critical point of the autonomous differential equation is the positive number h/k. A phase portrait shows that this point is unstable, so h/k is a repeller. For any initial condition $P(0) = P_0 < h/k$, dP/dt < 0, which means P(t) is monotonic decreasing and so the graph of P(t) must cross the t-axis or the line P = 0 at some time $t_1 > 0$. But $P(t_1) = 0$ means the population is extinct at time t_1 .
- ± 1 . Writing the differential equation in the form

$$\frac{dv}{dt} = \frac{k}{m} \left(\frac{mg}{k} - v\right)$$

we see that a critical point is mg/k.

From the phase portrait we see that mg/k is an asymptotically stable critical point. Thus, $\lim_{t\to\infty} v = mg/k$.

41 Writing the differential equation in the form

$$\frac{dv}{dt} = \frac{k}{m} \left(\frac{mg}{k} - v^2\right) = \frac{k}{m} \left(\sqrt{\frac{mg}{k}} - v\right) \left(\sqrt{\frac{mg}{k}} + v\right)$$

The see that the only physically meaningful critical point is $\sqrt{mg/k}$. From the phase portrait we see that $\sqrt{mg/k}$ is an asymptotically stable critical point. Thus, $\lim_{t\to\infty} v = \sqrt{mg/k}$.

a) From the phase portrait we see that critical points are α and β . Let $X(0) = X_0$. If $X_0 < \alpha$, we see that $X \to \alpha$ as $t \to \infty$. If $\alpha < X_0 < \beta$, we see that $X \to \alpha$ as $t \to \infty$. If $X_0 > \beta$, we see that X(t) increases in an unbounded manner, but more specific behavior of X(t) as $t \to \infty$ is not known.

Exercises 2.1 Solution Curves Without a Solution

- (b) When α = β the phase portrait is as shown. If X₀ < α, then X(t) → α as t → ∞. If X₀ > α, then X(t) increases in an unbounded manner. This could happen in a finite amount of time. That is, the phase portrait does not indicate that X becomes unbounded as t → ∞.
- (c) When k = 1 and $\alpha = \beta$ the differential equation is $dX/dt = (\alpha X)^2$. For $X(t) = \alpha 1/(t+c)$ we have $dX/dt = 1/(t+c)^2$ and

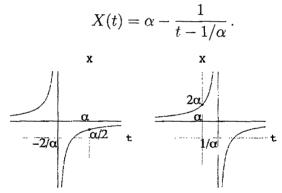
α

$$(\alpha - X)^2 = \left[\alpha - \left(\alpha - \frac{1}{t+c}\right)\right]^2 = \frac{1}{(t+c)^2} = \frac{dX}{dt}$$

For $X(0) = \alpha/2$ we obtain

$$X(t) = \alpha - \frac{1}{t + 2/\alpha}$$

For $X(0) = 2\alpha$ we obtain



For $X_0 > \alpha$, X(t) increases without bound up to $t = 1/\alpha$. For $t > 1/\alpha$, X(t) increases but $X \to \alpha$ as $t \to \infty$

Exercises 2.2

Separable Variables

The following problems we will encounter an expression of the form $\ln |g(y)| = f(x) + c$. To f(y) = g(y) we exponentiate both sides of the equation. This yields $|g(y)| = e^{f(x)+c} = e^c e^{f(x)}$ which $f(y) = \pm e^c e^{f(x)}$. Letting $c_1 = \pm e^c$ we obtain $g(y) = c_1 e^{f(x)}$.

1. From $dy = \sin 5x \, dx$ we obtain $y = -\frac{1}{5} \cos 5x + c$. **1** From $dy = (x+1)^2 dx$ we obtain $y = \frac{1}{2}(x+1)^3 + c$. E From $dy = -e^{-3x} dx$ we obtain $y = \frac{1}{2}e^{-3x} + c$. $= \lim_{x \to \infty} \frac{1}{(y-1)^2} dy = dx$ we obtain $-\frac{1}{y-1} = x + c$ or $y = 1 - \frac{1}{x+c}$. $= \operatorname{Frim} \frac{1}{y} dy = \frac{4}{x} dx \text{ we obtain } \ln |y| = 4 \ln |x| + c \text{ or } y = c_1 x^4.$ $f = Fran \frac{1}{u^2} dy = -2x dx$ we obtain $-\frac{1}{u} = -x^2 + c$ or $y = \frac{1}{x^2 + c}$. - From $e^{-2y}dy = e^{3x}dx$ we obtain $3e^{-2y} + 2e^{3x} = c$. • From $ye^y dy = (e^{-x} + e^{-3x}) dx$ we obtain $ye^y - e^y + e^{-x} + \frac{1}{2}e^{-3x} = c$. From $\left(y+2+\frac{1}{y}\right)dy = x^2 \ln x \, dx$ we obtain $\frac{y^2}{2} + 2y + \ln|y| = \frac{x^3}{3} \ln|x| - \frac{1}{9}x^3 + c.$ 11. From $\frac{1}{(2u+3)^2} dy = \frac{1}{(4x+5)^2} dx$ we obtain $\frac{2}{2u+3} = \frac{1}{4x+5} + c$. II From $\frac{1}{\csc y} dy = -\frac{1}{\sec^2 x} dx$ or $\sin y dy = -\cos^2 x dx = -\frac{1}{2}(1 + \cos 2x) dx$ we obtain $-\cos y = -\frac{1}{2}x - \frac{1}{4}\sin 2x + c$ or $4\cos y = 2x + \sin 2x + c_1$. 11 From $2y \, dy = -\frac{\sin 3x}{\cos^3 3x} \, dx$ or $2y \, dy = -\tan 3x \sec^2 3x \, dx$ we obtain $y^2 = -\frac{1}{6} \sec^2 3x + c$. 11 From $\frac{e^y}{(e^y+1)^2} dy = \frac{-e^x}{(e^x+1)^3} dx$ we obtain $-(e^y+1)^{-1} = \frac{1}{2}(e^x+1)^{-2} + c.$ Le From $\frac{y}{(1+y^2)^{1/2}} dy = \frac{x}{(1+x^2)^{1/2}} dx$ we obtain $(1+y^2)^{1/2} = (1+x^2)^{1/2} + c$. If From $\frac{1}{S} dS = k dr$ we obtain $S = ce^{kr}$. From $\frac{1}{Q-70} dQ = k dt$ we obtain $\ln |Q-70| = kt + c$ or $Q-70 = c_1 e^{kt}$.

17. From
$$\frac{1}{P-P^2}dP = \left(\frac{1}{P} + \frac{1}{1-P}\right)dP = dt$$
 we obtain $\ln|P| - \ln|1-P| = t + c$ so that $\ln\left|\frac{P}{1-P}\right| = t + c$ or $\frac{P}{1-P} = c_1e^t$. Solving for P we have $P = \frac{c_1e^t}{1+c_1e^t}$.
18. From $\frac{1}{N}dN = (te^{t+2} - 1)dt$ we obtain $\ln|N| = te^{t+2} - e^{t+2} - t + c$ or $N = c_1e^{te^{t+2} - e^{t+2} - t}$.
19. From $\frac{y-2}{y+3}dy = \frac{x-1}{x+4}dx$ or $\left(1 - \frac{5}{y+3}\right)dy = \left(1 - \frac{5}{x+4}\right)dx$ we obtain $y - 5\ln|y+3| = x - 5\ln|x+4| + c$ or $\left(\frac{x+4}{y+3}\right)^5 = c_1e^{x-y}$.
20. From $\frac{y+1}{y-1}dy = \frac{x+2}{x-3}dx$ or $\left(1 + \frac{2}{y-1}\right)dy = \left(1 + \frac{5}{x-3}\right)dx$ we obtain $y + 2\ln|y-1| = x + 5\ln|x-3| + c$ or $\frac{(y-1)^2}{(x-3)^5} = c_1e^{x-y}$.
21. From $x dx = \frac{1}{\sqrt{1-y^2}}dy$ we obtain $\frac{1}{2}x^2 = \sin^{-1}y + c$ or $y = \sin\left(\frac{x^2}{2} + c_1\right)$.
22. From $\frac{1}{y^2}dy = \frac{1}{e^x + e^{-x}}dx = \frac{e^x}{(e^x)^2+1}dx$ we obtain $-\frac{1}{y} = \tan^{-1}e^x + c$ or $y = -\frac{1}{\tan^{-1}e^x + c}$.
23. From $\frac{1}{y^2-1}dy = \frac{1}{x^2-1}dx$ or $\frac{1}{2}\left(\frac{1}{y-1} - \frac{1}{y+1}\right)dy = \frac{1}{2}\left(\frac{1}{x-1} - \frac{1}{x+1}\right)dx$ we obtain $\ln|y-1| - \ln|y+1| = \ln|x-1| - \ln|x+1| + \ln c$ or $\frac{y-1}{y+1} = \frac{c(x-1)}{x+1}$. Using $y(2) = 2$ we find $c = 1$. A solution of the initial-value problem is $\frac{y-1}{y+1} = \frac{x-1}{x+1}$ or $y = x$.
25. From $\frac{1}{y}dy = \frac{1-x}{x^2}dx = \left(\frac{1}{x^2} - \frac{1}{x}\right)dx$ we obtain $\ln|y| = \frac{1}{x} - \ln|x| = c$ or $xy = c_1e^{-1/x}$. Using $y(-1) = -1$ we find $c_1 = e^{-1}$. The solution of the initial-value problem is $\frac{y-1}{y+1} = \frac{x-1}{x+1}$ or $y = x$.
26. From $\frac{1}{1-2y}dy = \frac{1-x}{x^2}dx = \left(\frac{1}{x}-1}{x}\right)dx$ we obtain $\ln|y| = -\frac{1}{x} - \ln|x| = c$ or $xy = c_1e^{-1/x}$. Using $y(-1) = -1$ we find $c_1 = e^{-1}$. The solution of the initial-value problem is $\frac{y-1}{y+1} = \frac{x-1}{x+1}$ or $y = x$.
26. From $\frac{1}{1-2y}dy = dt$ we obtain $-\frac{1}{2}\ln|1-2y| = t + c$ or $1-2y = c_1e^{-2t}$. Using $y(0) = 5/2$ we find $c_1 = -4$. The solution of the initial-value problem is $1 - 2y = -4e^{-2t}$ or $y = 2e^{-2t} + \frac{1}{2}$.
27. Separating vari

$$\frac{dx}{\sqrt{1-x^2}} - \frac{dy}{\sqrt{1-y^2}} = 0 \quad \text{and} \quad \sin^{-1}x - \sin^{-1}y = c.$$

38

Setting x = 0 and $y = \sqrt{3}/2$ we obtain $c = -\pi/3$. Thus, an implicit solution of the initial-value problem is $\sin^{-1} x - \sin^{-1} y = -\pi/3$. Solving for y and using an addition formula from trigonometry, we get

$$y = \sin\left(\sin^{-1}x + \frac{\pi}{3}\right) = x\cos\frac{\pi}{3} + \sqrt{1 - x^2}\sin\frac{\pi}{3} = \frac{x}{2} + \frac{\sqrt{3}\sqrt{1 - x^2}}{2}$$

28. From $\frac{1}{1+(2y)^2} dy = \frac{-x}{1+(x^2)^2} dx$ we obtain $\frac{1}{2} \tan^{-1} 2y = -\frac{1}{2} \tan^{-1} x^2 + c$ or $\tan^{-1} 2y + \tan^{-1} x^2 = c_1$.

Using y(1) = 0 we find $c_1 = \pi/4$. Thus, an implicit solution of the initial-value problem is $\tan^{-1} 2y + \tan^{-1} x^2 = \pi/4$. Solving for y and using a trigonometric identity we get

$$2y = \tan\left(\frac{\pi}{4} - \tan^{-1}x^2\right)$$
$$y = \frac{1}{2}\tan\left(\frac{\pi}{4} - \tan^{-1}x^2\right)$$
$$= \frac{1}{2}\frac{\tan\frac{\pi}{4} - \tan(\tan^{-1}x^2)}{1 + \tan\frac{\pi}{4}\tan(\tan^{-1}x^2)}$$
$$= \frac{1}{2}\frac{1 - x^2}{1 + x^2}.$$

29. Separating variables, integrating from 4 to x, and using t as a dummy variable of integration gives

$$\int_{4}^{x} \frac{1}{y} \frac{dy}{dt} dt = \int_{4}^{x} e^{-t^{2}} dt$$
$$\ln y(t)\Big|_{4}^{x} = \int_{4}^{x} e^{-t^{2}} dt$$
$$\ln y(x) - \ln y(4) = \int_{4}^{x} e^{-t^{2}} dt$$

Using the initial condition we have

$$\ln y(x) = \ln y(4) + \int_4^x e^{-t^2} dt = \ln 1 + \int_4^x e^{-t^2} dt = \int_4^x e^{-t^2} dt.$$

Thus,

$$y(x) = e^{\int_4^x e^{-t^2} dt}.$$

30. Separating variables, integrating from -2 to x, and using t as a dummy variable of integration gives

$$\int_{-2}^{x} \frac{1}{y^2} \frac{dy}{dt} dt = \int_{-2}^{x} \sin t^2 dt$$
$$-y(t)^{-1}\Big|_{-2}^{x} = \int_{-2}^{x} \sin t^2 dt$$
$$-y(x)^{-1} + y(-2)^{-1} = \int_{-2}^{x} \sin t^2 dt$$
$$-y(x)^{-1} = -y(-2)^{-1} + \int_{-2}^{x} \sin t^2 dt$$
$$y(x)^{-1} = 3 - \int_{-2}^{x} \sin t^2 dt.$$

Thus

$$y(x) = \frac{1}{3 - \int_{-2}^{x} \sin t^2 dt}$$

31. (a) The equilibrium solutions y(x) = 2 and y(x) = -2 satisfy the initial conditions y(0) = 2 and y(0) = -2, respectively. Setting $x = \frac{1}{4}$ and y = 1 in $y = 2(1 + ce^{4x})/(1 - ce^{4x})$ we obtain

$$1 = 2\frac{1+ce}{1-ce}$$
, $1-ce = 2+2ce$, $-1 = 3ce$, and $c = -\frac{1}{3e}$.

The solution of the corresponding initial-value problem is

$$y = 2\frac{1 - \frac{1}{3}e^{4x-1}}{1 + \frac{1}{3}e^{4x-1}} = 2\frac{3 - e^{4x-1}}{3 + e^{4x-1}}.$$

(b) Separating variables and integrating yields

$$\frac{1}{4}\ln|y-2| - \frac{1}{4}\ln|y+2| + \ln c_1 = x$$
$$\ln|y-2| - \ln|y+2| + \ln c = 4x$$
$$\ln\left|\frac{c(y-2)}{y+2}\right| = 4x$$
$$c\frac{y-2}{y+2} = e^{4x}$$

Solving for y we get $y = 2(c + e^{4x})/(c - e^{4x})$. The initial condition y(0) = -2 implies 2(c+1)/(c-1) = -2 which yields c = 0 and y(x) = -2. The initial condition y(0) = 2 does not correspond to a value of c, and it must simply be recognized that y(x) = 2 is a solution of the initial-value problem. Setting $x = \frac{1}{4}$ and y = 1 in $y = 2(c + e^{4x})/(c - e^{4x})$ leads to $c = -3\epsilon$. Thus, a solution of the initial-value problem is

$$y = 2 \frac{-3e + e^{4x}}{-3e - e^{4x}} = 2 \frac{3 - e^{4x-1}}{3 + e^{4x-1}}.$$

40

32. Separating variables, we have

$$\frac{dy}{y^2 - y} = \frac{dx}{x} \qquad \text{or} \qquad \int \frac{dy}{y(y - 1)} = \ln|x| + c.$$

Using partial fractions, we obtain

$$\int \left(\frac{1}{y-1} - \frac{1}{y}\right) dy = \ln|x| + c$$
$$\ln|y-1| - \ln|y| = \ln|x| + c$$
$$\ln\left|\frac{y-1}{xy}\right| = c$$
$$\frac{y-1}{xy} = e^c = c_1.$$

Solving for y we get $y = 1/(1-c_1x)$. We note by inspection that y = 0 is a singular solution of the differential equation.

- (a) Setting x = 0 and y = 1 we have 1 = 1/(1 0), which is true for all values of c_1 . Thus, solutions passing through (0, 1) are $y = 1/(1 c_1 x)$.
- (b) Setting x = 0 and y = 0 in $y = 1/(1 c_1 x)$ we get 0 = 1. Thus, the only solution passing through (0, 0) is y = 0.
- (c) Setting $x = \frac{1}{2}$ and $y = \frac{1}{2}$ we have $\frac{1}{2} = 1/(1 \frac{1}{2}c_1)$, so $c_1 = -2$ and y = 1/(1 + 2x).
- (d) Setting x = 2 and $y = \frac{1}{4}$ we have $\frac{1}{4} = 1/(1-2c_1)$, so $c_1 = -\frac{3}{2}$ and $y = 1/(1+\frac{3}{2}x) = 2/(2+3x)$.
- 1.1. Singular solutions of $dy/dx = x\sqrt{1-y^2}$ are y = -1 and y = 1. A singular solution of $e^x + e^{-x})dy/dx = y^2$ is y = 0.
- 14. Differentiating $\ln(x^2 + 10) + \csc y = c$ we get

$$\frac{2x}{x^2+10} - \csc y \, \cot y \, \frac{dy}{dx} = 0,$$
$$\frac{2x}{x^2+10} - \frac{1}{\sin y} \cdot \frac{\cos y}{\sin y} \, \frac{dy}{dx} = 0,$$

· _

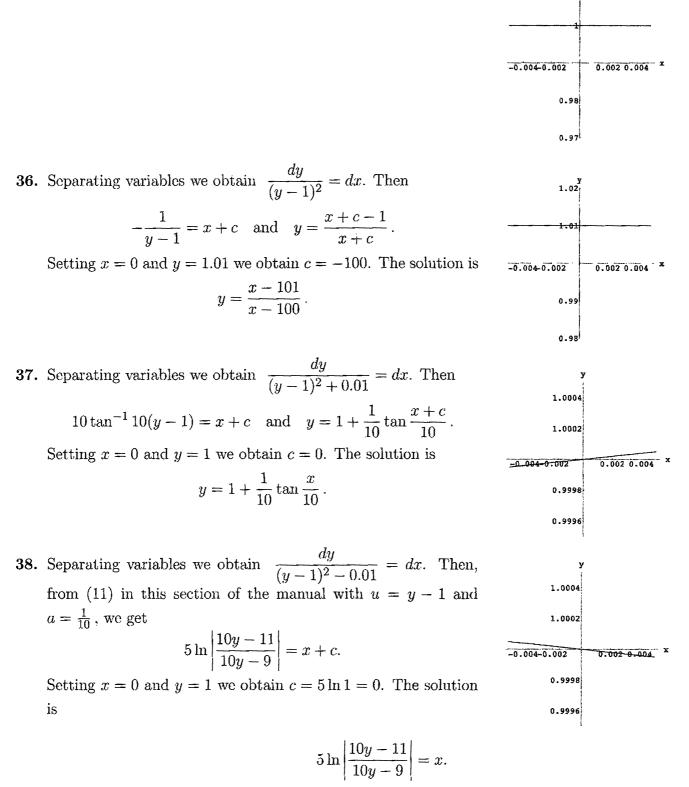
$$2x\sin^2 y \, dx - (x^2 + 10)\cos y \, dy = 0.$$

Triting the differential equation in the form

$$\frac{dy}{dx} = \frac{2x\sin^2 y}{(x^2 + 10)\cos y}$$

 \rightarrow see that singular solutions occur when $\sin^2 y = 0$, or $y = k\pi$, where k is an integer.

35. The singular solution y = 1 satisfies the initial-value problem.



1.01

Solving for y we obtain

$$y = \frac{11 + 9e^{x/5}}{10 + 10e^{x/5}} \,.$$

....

Alternatively, we can use the fact that

$$\int \frac{dy}{(y-1)^2 - 0.01} = -\frac{1}{0.1} \tanh^{-1} \frac{y-1}{0.1} = -10 \tanh^{-1} 10(y-1).$$

(We use the inverse hyperbolic tangent because |y - 1| < 0.1 or 0.9 < y < 1.1. This follows from the initial condition y(0) = 1.) Solving the above equation for y we get $y = 1 + 0.1 \tanh(x/10)$.

39. Separating variables, we have

$$\frac{dy}{y-y^3} = \frac{dy}{y(1-y)(1+y)} = \left(\frac{1}{y} + \frac{1/2}{1-y} - \frac{1/2}{1+y}\right) dy = dx.$$

Integrating, we get

$$\ln|y| - \frac{1}{2}\ln|1 - y| - \frac{1}{2}\ln|1 + y| = x + c$$

When y > 1, this becomes

$$\ln y - \frac{1}{2}\ln(y-1) - \frac{1}{2}\ln(y+1) = \ln \frac{y}{\sqrt{y^2 - 1}} = x + c.$$

Letting x = 0 and y = 2 we find $c = \ln(2/\sqrt{3})$. Solving for y we get $y_1(x) = 2e^x/\sqrt{4e^{2x}-3}$, where $x > \ln(\sqrt{3}/2)$.

When 0 < y < 1 we have

$$\ln y - \frac{1}{2}\ln(1-y) - \frac{1}{2}\ln(1+y) = \ln \frac{y}{\sqrt{1-y^2}} = x + c.$$

Letting x = 0 and $y = \frac{1}{2}$ we find $c = \ln(1/\sqrt{3})$. Solving for y we get $y_2(x) = e^x/\sqrt{e^{2x}+3}$, where $-\infty < x < \infty$.

When -1 < y < 0 we have

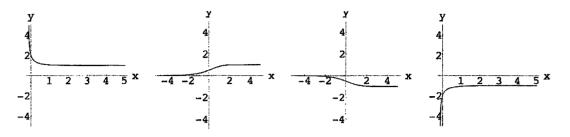
$$\ln(-y) - \frac{1}{2}\ln(1-y) - \frac{1}{2}\ln(1+y) = \ln\frac{-y}{\sqrt{1-y^2}} = x + c.$$

Letting x = 0 and $y = -\frac{1}{2}$ we find $c = \ln(1/\sqrt{3})$. Solving for y we get $y_3(x) = -e^x/\sqrt{e^{2x}+3}$, where $-\infty < x < \infty$.

When y < -1 we have

$$\ln(-y) - \frac{1}{2}\ln(1-y) - \frac{1}{2}\ln(-1-y) = \ln\frac{-y}{\sqrt{y^2 - 1}} = x + c.$$

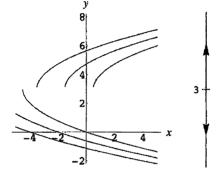
Letting x = 0 and y = -2 we find $c = \ln(2/\sqrt{3})$. Solving for y we get $y_4(x) = -2e^x/\sqrt{4e^{2x}-3}$, where $x > \ln(\sqrt{3}/2)$.



40. (a) The second derivative of y is

$$\frac{d^2y}{dx^2} = -\frac{dy/dx}{(y-1)^2} = -\frac{1/(y-3)}{(y-3)^2} = -\frac{1}{(y-3)^3}.$$

The solution curve is concave down when $d^2y/dx^2 < 0$ or y > 3, and concave up when $d^2y/dx^2 > 0$ or y < 3. From the phase portrait we see that the solution curve is decreasing when y < 3 and increasing when y > 3.



(b) Separating variables and integrating we obtain

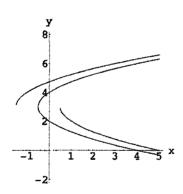
$$(y-3) dy = dx$$

$$\frac{1}{2}y^2 - 3y = x + c$$

$$y^2 - 6y + 9 = 2x + c_1$$

$$(y-3)^2 = 2x + c_1$$

$$y = 3 \pm \sqrt{2x + c_1}$$



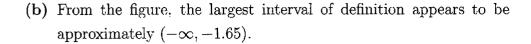
The initial condition dictates whether to use the plus or minus sign.

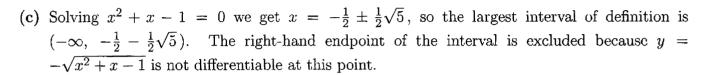
When $y_1(0) = 4$ we have $c_1 = 1$ and $y_1(x) = 3 + \sqrt{2x+1}$. When $y_2(0) = 2$ we have $c_1 = 1$ and $y_2(x) = 3 - \sqrt{2x+1}$. When $y_3(1) = 2$ we have $c_1 = -1$ and $y_3(x) = 3 - \sqrt{2x-1}$. When $y_4(-1) = 4$ we have $c_1 = 3$ and $y_4(x) = 3 + \sqrt{2x+3}$.

41. (a) Separating variables we have $2y \, dy = (2x+1)dx$. Integrating gives $y^2 = x^2 + x + c$. When y(-2) = -1 we find c = -1, so $y^2 = x^2 + x - 1$ and $y = -\sqrt{x^2 + x - 1}$. The negative square root is chosen because of the initial condition.

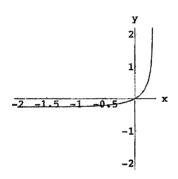
44

-5 -4 -3 -2 -1 -1 -2 -3



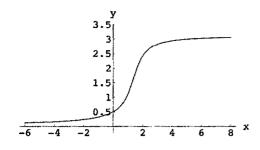


- $\div 2.$ (a) From Problem 7 the general solution is $3e^{-2y} + 2e^{3x} = c$. When y(0) = 0 we find c = 5, so $3e^{-2y} + 2e^{3x} = 5$. Solving for y we get $y = -\frac{1}{2} \ln \frac{1}{3}(5 2e^{3x})$.
 - (b) The interval of definition appears to be approximately $(-\infty, 0.3)$.



- (c) Solving $\frac{1}{3}(5-2e^{3x})=0$ we get $x=\frac{1}{3}\ln(\frac{5}{2})$, so the exact interval of definition is $(-\infty,\frac{1}{3}\ln\frac{5}{2})$.
- $\pm 3.$ (a) While $y_2(x) = -\sqrt{25 x^2}$ is defined at x = -5 and x = 5, $y'_2(x)$ is not defined at these values, and so the interval of definition is the open interval (-5, 5).
 - (b) At any point on the x-axis the derivative of y(x) is undefined, so no solution curve can cross the x-axis. Since -x/y is not defined when y = 0, the initial-value problem has no solution.
- 44. (a) Separating variables and integrating we obtain x² y² = c. For c ≠ 0 the graph is a hyperbola centered at the origin. All four initial conditions imply c = 0 and y = ±x. Since the differential equation is not defined for y = 0, solutions are y = ±x, x < 0 and y = ±x, x > 0. The solution for y(a) = a is y = x, x > 0; for y(a) = -a is y = -x; for y(-a) = a is y = -x, x < 0; and for y(-a) = -a is y = x, x < 0.
 - (b) Since x/y is not defined when y = 0, the initial-value problem has no solution.
 - (c) Setting x = 1 and y = 2 in $x^2 y^2 = c$ we get c = -3, so $y^2 = x^2 + 3$ and $y(x) = \sqrt{x^2 + 3}$, where the positive square root is chosen because of the initial condition. The domain is all real numbers since $x^2 + 3 > 0$ for all x.

45. Separating variables we have $dy/(\sqrt{1+y^2} \sin^2 y) = dx$ which is not readily integrated (even by a CAS). We note that $dy/dx \ge 0$ for all values of x and y and that dy/dx = 0when y = 0 and $y = \pi$, which are equilibrium solutions.



46. Separating variables we have $dy/(\sqrt{y}+y) = dx/(\sqrt{x}+x)$. To integrate $\int dx/(\sqrt{x}+x)$ we substitute $u^2 = x$ and get

$$\int \frac{2u}{u+u^2} \, du = \int \frac{2}{1+u} \, du = 2\ln|1+u| + c = 2\ln(1+\sqrt{x}) + c.$$

Integrating the separated differential equation we have

$$2\ln(1+\sqrt{y}) = 2\ln(1+\sqrt{x}) + c$$
 or $\ln(1+\sqrt{y}) = \ln(1+\sqrt{x}) + \ln c_1$.

Solving for y we get $y = [c_1(1 + \sqrt{x}) - 1]^2$.

47. We are looking for a function y(x) such that

$$y^2 + \left(\frac{dy}{dx}\right)^2 = 1.$$

Using the positive square root gives

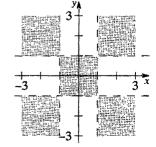
$$\frac{dy}{dx} = \sqrt{1 - y^2} \implies \frac{dy}{\sqrt{1 - y^2}} = dx \implies \sin^{-1} y = x + c.$$

Thus a solution is $y = \sin(x + c)$. If we use the negative square root we obtain

$$y = \sin(c - x) = -\sin(x - c) = -\sin(x + c_1).$$

Note that when $c = c_1 = 0$ and when $c = c_1 = \pi/2$ we obtain the well known particular solutions $y = \sin x$, $y = -\sin x$, $y = \cos x$, and $y = -\cos x$. Note also that y = 1 and y = -1 are singular solutions.

48. (a)

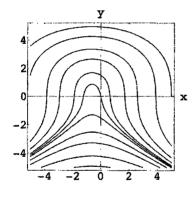


(b) For |x| > 1 and |y| > 1 the differential equation is $dy/dx = \sqrt{y^2 - 1}/\sqrt{x^2 - 1}$. Separating variables and integrating, we obtain

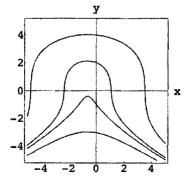
$$\frac{dy}{\sqrt{y^2 - 1}} = \frac{dx}{\sqrt{x^2 - 1}}$$
 and $\cosh^{-1} y = \cosh^{-1} x + c.$

Setting x = 2 and y = 2 we find $c = \cosh^{-1} 2 - \cosh^{-1} 2 = 0$ and $\cosh^{-1} y = \cosh^{-1} x$. An explicit solution is y = x.

- 49. Since the tension T_1 (or magnitude T_1) acts at the lowest point of the cable, we use symmetry to solve the problem on the interval [0, L/2]. The assumption that the roadbed is uniform (that is, weighs a constant ρ pounds per horizontal foot) implies $W = \rho x$, where x is measured in feet and $0 \le x \le L/2$. Therefore (10) in the text becomes $dy/dx = (\rho/T_1)x$. This last equation is a separable equation of the form given in (1) of Section 2.2 in the text. Integrating and using the initial condition y(0) = a shows that the shape of the cable is a parabola: $y(x) = (\rho/2T_1)x^2 + a$. In terms of the sag h of the cable and the span L, we see from Figure 2.2.5 in the text that y(L/2) = h + a. By applying this last condition to $y(x) = (\rho/2T_1)x^2 + a$ enables us to express $\rho/2T_1$ in terms of h and L: $y(x) = (4h/L^2)x^2 + a$. Since y(x) is an even function of x, the solution is valid on $-L/2 \le x \le L/2$.
- 50. (a) Separating variables and integrating, we have (3y² + 1)dy = -(8x+5)dx and y³ + y = -4x² 5x + c. Using a CAS we show various contours of f(x, y) = y³ + y + 4x² + 5x. The plots shown on [-5,5] × [-5,5] correspond to c-values of 0, ±5, ±20, ±40, ±80, and ±125.



(b) The value of c corresponding to y(0) = -1 is f(0, -1) = -2; to y(0) = 2 is f(0, 2) = 10; to y(-1) = 4 is f(-1, 4) = 67; and to y(-1) = -3 is -31.



51. (a) An implicit solution of the differential equation $(2y+2)dy - (4x^3+6x)dx = 0$ is

$$y^2 + 2y - x^4 - 3x^2 + c = 0.$$

47

The condition y(0) = -3 implies that c = -3. Therefore $y^2 + 2y - x^4 - 3x^2 - 3 = 0$.

(b) Using the quadratic formula we can solve for y in terms of x:

$$y = \frac{-2 \pm \sqrt{4 + 4(x^4 + 3x^2 + 3)}}{2}$$

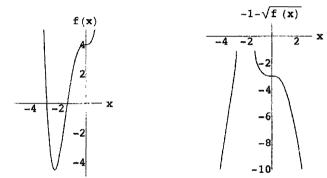
The explicit solution that satisfies the initial condition is then

$$y = -1 - \sqrt{x^4 + 3x^3 + 4}$$

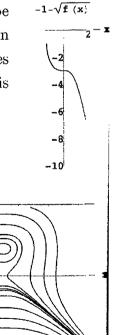
(c) From the graph of $f(x) = x^4 + 3x^3 + 4$ below we see that $f(x) \le 0$ on the approximate interva--2.8 $\le x \le -1.3$. Thus the approximate domain of the function

$$y = -1 - \sqrt{x^4 + 3x^3 + 4} = -1 - \sqrt{f(x)}$$

is $x \leq -2.8$ or $x \geq -1.3$. The graph of this function is shown below.



(d) Using the root finding capabilities of a CAS, the zeros of f are found to be -2.82202 and -1.3409. The domain of definition of the solution y(x) is then x > -1.3409. The equality has been removed since the derivative dy/dx does not exist at the points where f(x) = 0. The graph of the solution $y = \phi(x)$ is given on the right.



у

2

0

-2

--6

-4

-2

0

52. (a) Separating variables and integrating, we have

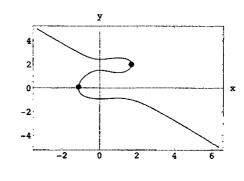
$$(-2y+y^2)dy = (x-x^2)dx$$

and

$$-y^{2} + \frac{1}{3}y^{3} = \frac{1}{2}x^{2} - \frac{1}{3}x^{3} + c.$$

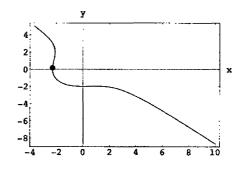
Using a CAS we show some contours of $f(x, y) = 2y^3 - 6y^2 + 2x^3 - 3x^2$. The plots shown on $[-7, 7] \times [-5, 5]$ correspond to *c*-values of -450, -300, -200, -120, -60, -20, -10, -8.1, -5, -0.8, 20, 60, and 120.

(b) The value of c corresponding to $y(0) = \frac{3}{2}$ is $f(0, \frac{3}{2}) = -\frac{27}{4}$. The portion of the graph between the dots corresponds to the solution curve satisfying the initial condition. To determine the interval of definition we find dy/dx for $2y^3 - 6y^2 + 2x^3 - 3x^2 = -\frac{27}{4}$. Using implicit differentiation we get $y' = (x - x^2)/(y^2 - 2y)$, which is infinite when y = 0 and y = 2. Letting y = 0 in $2y^3 - 6y^2 + 2x^3 - 3x^2 = -\frac{27}{4}$ and using a CAS to solve for x we get x = -1.13232. Similarly, letting y = 2, we find



for x we get x = -1.13232. Similarly, letting y = 2, we find x = 1.71299. The largest interval of definition is approximately (-1.13232, 1.71299).

(c) The value of c corresponding to y(0) = -2 is f(0, -2) = -40. The portion of the graph to the right of the dot corresponds to the solution curve satisfying the initial condition. To determine the interval of definition we find dy/dx for $2y^3 - 6y^2 + 2x^3 - 3x^2 = -40$. Using implicit differentiation we get $y' = (x - x^2)/(y^2 - 2y)$, which is infinite when y = 0 and y = 2. Letting y = 0 in $2y^3 - 6y^2 + 2x^3 - 3x^2 = -40$ and using a CAS to solve



for x we get x = -2.29551. The largest interval of definition is approximately $(-2.29551, \infty)$.

Exercises 2.3

Linear Equations

- 1. For y' 5y = 0 an integrating factor is $e^{-\int 5 dx} = e^{-5x}$ so that $\frac{d}{dx} \left[e^{-5x} y \right] = 0$ and $y = ce^{5x}$ for $-\infty < x < \infty$. There is no transient term.
- 2. For y' + 2y = 0 an integrating factor is $e^{\int 2 dx} = e^{2x}$ so that $\frac{d}{dx} \left[e^{2x} y \right] = 0$ and $y = ce^{-2x}$ for $-\infty < x < \infty$. The transient term is ce^{-2x} .
- 3. For $y' + y = e^{3x}$ an integrating factor is $e^{\int dx} = e^x$ so that $\frac{d}{dx}[e^x y] = e^{4x}$ and $y = \frac{1}{4}e^{3x} + ce^{-x}$ for $-\infty < x < \infty$. The transient term is ce^{-x} .
- 4. For $y' + 4y = \frac{4}{3}$ an integrating factor is $e^{\int 4 dx} = e^{4x}$ so that $\frac{d}{dx} \left[e^{4x} y \right] = \frac{4}{3} e^{4x}$ and $y = \frac{1}{3} + c e^{-4x}$ for $-\infty < x < \infty$. The transient term is $c e^{-4x}$.

Exercises 2.3 Linear Equations

- 5. For $y' + 3x^2y = x^2$ an integrating factor is $e^{\int 3x^2 dx} = e^{x^3}$ so that $\frac{d}{dx} \left[e^{x^3}y \right] = x^2 e^{x^3}$ and $y = \frac{1}{3} + c e^{-x^3}$ for $-\infty < x < \infty$. The transient term is ce^{-x^3} .
- 6. For $y' + 2xy = x^3$ an integrating factor is $e^{\int 2x \, dx} = e^{x^2}$ so that $\frac{d}{dx} \left[e^{x^2} y \right] = x^3 e^{x^2}$ and $e^{-\frac{1}{2}x^2} \frac{1}{2} + ce^{-x^2}$ for $-\infty < x < \infty$. The transient term is ce^{-x^2} .
- 7. For $y' + \frac{1}{x}y = \frac{1}{x^2}$ an integrating factor is $e^{\int (1/x)dx} = x$ so that $\frac{d}{dx}[xy] = \frac{1}{x}$ and $y = \frac{1}{x}\ln x \frac{1}{x}$ for $0 < x < \infty$. The entire solution is transient.
- 8. For $y' 2y = x^2 + 5$ an integrating factor is $e^{-\int 2 dx} = e^{-2x}$ so that $\frac{d}{dx} \left[e^{-2x} y \right] = x^2 e^{-2x} + 5e^{-1x}$ and $y = -\frac{1}{2}x^2 - \frac{1}{2}x - \frac{11}{4} + ce^{2x}$ for $-\infty < x < \infty$. There is no transient term.
- 9. For $y' \frac{1}{x}y = x \sin x$ an integrating factor is $e^{-\int (1/x)dx} = \frac{1}{x}$ so that $\frac{d}{dx}\left[\frac{1}{x}y\right] = \sin x$ and $y = cx x \cos x$ for $0 < x < \infty$. There is no transient term.
- 10. For $y' + \frac{2}{x}y = \frac{3}{x}$ an integrating factor is $e^{\int (2/x)dx} = x^2$ so that $\frac{d}{dx} \left[x^2 y \right] = 3x$ and $y = \frac{3}{2} + cx^{-1}$ for $0 < x < \infty$. The transient term is cx^{-2} .
- 11. For $y' + \frac{4}{x}y = x^2 1$ an integrating factor is $e^{\int (4/x)dx} = x^4$ so that $\frac{d}{dx} \left[x^4 y \right] = x^6 x^4$ and $y = \frac{1}{7}x^3 \frac{1}{5}x + cx^{-4}$ for $0 < x < \infty$. The transient term is cx^{-4} .
- 12. For $y' \frac{x}{(1+x)}y = x$ an integrating factor is $e^{-\int [x/(1+x)]dx} = (x+1)e^{-x}$ so that $\frac{d}{dx}[(x+1)e^{-x}y] = x(x+1)e^{-x}$ and $y = -x \frac{2x+3}{x+1} + \frac{ce^x}{x+1}$ for $-1 < x < \infty$. There is no transient term.
- 13. For $y' + \left(1 + \frac{2}{x}\right)y = \frac{e^x}{x^2}$ an integrating factor is $e^{\int [1 + (2/x)]dx} = x^2 e^x$ so that $\frac{d}{dx} \left[x^2 e^x y\right] = e^{2x}$ and $y = \frac{1}{2}\frac{e^x}{x^2} + \frac{ce^{-x}}{x^2}$ for $0 < x < \infty$. The transient term is $\frac{ce^{-x}}{x^2}$.
- 14. For $y' + \left(1 + \frac{1}{x}\right)y = \frac{1}{x}e^{-x}\sin 2x$ an integrating factor is $e^{\int [1 + (1/x)]dx} = xe^x$ so that $\frac{d}{dx}[xe^x y] = \sin 2x$ and $y = -\frac{1}{2x}e^{-x}\cos 2x + \frac{ce^{-x}}{x}$ for $0 < x < \infty$. The entire solution is transient.
- 15. For $\frac{dx}{dy} \frac{4}{y}x = 4y^5$ an integrating factor is $e^{-\int (4/y)dy} = e^{\ln y^{-4}} = y^{-4}$ so that $\frac{d}{dy} \left[y^{-4}x \right] = 4y$ and $x = 2y^6 + cy^4$ for $0 < y < \infty$. There is no transient term.

50

Exercises 2.3 Linear Equations

$$i = \frac{E}{R} + ce^{-Rt/L} \text{ for } -\infty < t < \infty. \text{ If } i(0) = i_0 \text{ then } c = i_0 - E/R \text{ and } i = \frac{E}{R} + \left(i_0 - \frac{E}{R}\right)e^{-Rt/L}$$

For $\frac{dT}{dt} = kT = -T$, k an integrating factor is $e^{\int (-k)dt} = e^{-kt}$ so that $\frac{d}{dt} \left[e^{-kt}T\right] = -T$, ke^{-kt} as

28. For $\frac{dT}{dt} - kT = -T_m k$ an integrating factor is $e^{\int (-k)dt} = e^{-kt}$ so that $\frac{d}{dt} [e^{-kt}T] = -T_m k e^{-kt}$ and $T = T_m + ce^{kt}$ for $-\infty < t < \infty$. If $T(0) = T_0$ then $c = T_0 - T_m$ and $T = T_m + (T_0 - T_m)e^{kt}$.

29. For
$$y' + \frac{1}{x+1}y = \frac{11x}{x+1}$$
 an integrating factor is $e^{\int [1/(x+1)]dx} = x+1$ so that $\frac{d}{dx}[(x+1)y] = \frac{11x}{x+1}$

 $\ln x \text{ and } y = \frac{x}{x+1} \ln x - \frac{x}{x+1} + \frac{c}{x+1} \text{ for } 0 < x < \infty. \text{ If } y(1) = 10 \text{ then } c = 21 \text{ and}$

$$y = \frac{1}{x+1} \ln x - \frac{1}{x+1} + \frac{1}{x+1}$$

- **30.** For $y' + (\tan x)y = \cos^2 x$ an integrating factor is $e^{\int \tan x \, dx} = e^{\ln|\sec x|} = \sec x$ so that $\frac{d}{dx} [(\sec x)y] = \cos x$ and $y = \sin x \cos x + c \cos x$ for $-\pi/2 < x < \pi/2$. If y(0) = -1 then c = -1 and $y = \sin x \cos x \cos x$.
- **31.** For y' + 2y = f(x) an integrating factor is e^{2x} so that

$$ye^{2x} = \begin{cases} \frac{1}{2}e^{2x} + c_1, & 0 \le x \le 3\\ c_2, & x > 3. \end{cases}$$

If y(0) = 0 then $c_1 = -1/2$ and for continuity we must have $c_2 = \frac{1}{2}e^6 - \frac{1}{2}$ so that

$$y = \begin{cases} \frac{1}{2}(1 - e^{-2x}), & 0 \le x \le 3\\ \frac{1}{2}(e^6 - 1)e^{-2x}, & x > 3. \end{cases}$$

1

32. For y' + y = f(x) an integrating factor is e^x so that

$$ye^{x} = \begin{cases} e^{x} + c_{1}, & 0 \le x \le \\ -e^{x} + c_{2}, & x > 1. \end{cases}$$

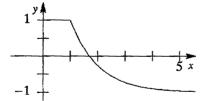
If y(0) = 1 then $c_1 = 0$ and for continuity we must have $c_2 = 2e$ so that

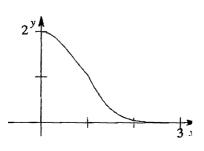
$$y = \begin{cases} 1, & 0 \le x \le 1\\ 2e^{1-x} - 1, & x > 1. \end{cases}$$

33. For y' + 2xy = f(x) an integrating factor is e^{x^2} so that

$$ye^{x^2} = \begin{cases} \frac{1}{2}e^{x^2} + c_1, & 0 \le x \le 1\\ c_2, & x > 1. \end{cases}$$

If y(0) = 2 then $c_1 = 3/2$ and for continuity we must have $c_2 = \frac{1}{2}e + \frac{3}{2}$ so that





$$y = \begin{cases} \frac{1}{2} + \frac{3}{2}e^{-x^2}, & 0 \le x \le 1\\ \left(\frac{1}{2}e + \frac{3}{2}\right)e^{-x^2}, & x > 1. \end{cases}$$

14. For

$$y' + \frac{2x}{1+x^2}y = \begin{cases} \frac{x}{1+x^2}, & 0 \le x \le 1\\ \frac{-x}{1+x^2}, & x > 1, \end{cases}$$

an integrating factor is $1 + x^2$ so that

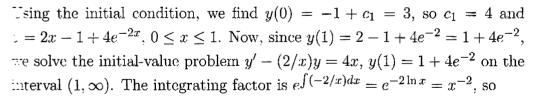
$$(1+x^2) y = \begin{cases} \frac{1}{2}x^2 + c_1, & 0 \le x \le 1\\ -\frac{1}{2}x^2 + c_2, & x > 1. \end{cases}$$

If y(0) = 0 then $c_1 = 0$ and for continuity we must have $c_2 = 1$ so that

$$y = \begin{cases} \frac{1}{2} - \frac{1}{2(1+x^2)}, & 0 \le x \le 1\\ \frac{3}{2(1+x^2)} - \frac{1}{2}, & x > 1. \end{cases}$$

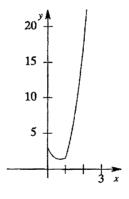
15. [Ne first solve the initial-value problem y' + 2y = 4x, y(0) = 3 on the interval [1, 1]. The integrating factor is $e^{\int 2 dx} = e^{2x}$, so

$$\frac{d}{dx}[e^{2x}y] = 4xe^{2x}$$
$$e^{2x}y = \int 4xe^{2x}dx = 2xe^{2x} - e^{2x} + c_1$$
$$y = 2x - 1 + c_1e^{-2x}.$$



$$\frac{d}{dx}[x^{-2}y] = 4xx^{-2} = \frac{4}{x}$$
$$x^{-2}y = \int \frac{4}{x} dx = 4\ln x + c_2$$
$$y = 4x^2\ln x + c_2x^2.$$

We use $\ln x$ instead of $\ln |x|$ because x > 1.) Using the initial condition we find $y(1) = c_2 = 1 + 4e^{-2}$, $y = 4x^2 \ln x + (1 + 4e^{-2})x^2$, x > 1. Thus, the solution of the original initial-value problem is



53

Exercises 2.3 Linear Equations

$$y = \begin{cases} 2x - 1 + 4e^{-2x}, & 0 \le x \le 1\\ 4x^2 \ln x + (1 + 4e^{-2})x^2, & x > 1. \end{cases}$$

See Problem 42 in this section.

36. For $y' + e^x y = 1$ an integrating factor is e^{e^x} . Thus

$$\frac{d}{dx}\left[e^{e^x}y\right] = e^{e^x} \quad \text{and} \quad e^{e^x}y = \int_0^x e^{e^t}dt + c.$$

From y(0) = 1 we get c = e, so $y = e^{-e^x} \int_0^x e^{e^t} dt + e^{1-e^x}$.

When $y' + e^x y = 0$ we can separate variables and integrate:

$$\frac{dy}{y} = -e^x dx$$
 and $\ln |y| = -e^x + c$

Thus $y = c_1 e^{-e^x}$. From y(0) = 1 we get $c_1 = e$, so $y = e^{1-e^x}$.

When $y' + e^x y = e^x$ we can see by inspection that y = 1 is a solution.

37. An integrating factor for y' - 2xy = 1 is e^{-x^2} . Thus

$$\frac{d}{dx}[e^{-x^2}y] = e^{-x^2}$$
$$e^{-x^2}y = \int_0^x e^{-t^2}dt = \frac{\sqrt{\pi}}{2}\operatorname{erf}(x) + c$$
$$y = \frac{\sqrt{\pi}}{2}e^{x^2}\operatorname{erf}(x) + ce^{x^2}.$$

From $y(1) = (\sqrt{\pi}/2)e \operatorname{erf}(1) + ce = 1$ we get $c = e^{-1} - \frac{\sqrt{\pi}}{2}\operatorname{erf}(1)$. The solution of the initial-value problem is

$$y = \frac{\sqrt{\pi}}{2} e^{x^2} \operatorname{erf}(x) + \left(e^{-1} - \frac{\sqrt{\pi}}{2} \operatorname{erf}(1)\right) e^{x^2}$$
$$= e^{x^2 - 1} + \frac{\sqrt{\pi}}{2} e^{x^2} (\operatorname{erf}(x) - \operatorname{erf}(1)).$$

- **38.** We want 4 to be a critical point, so we use y' = 4 y.
- **39.** (a) All solutions of the form $y = x^5 e^x x^4 e^x + cx^4$ satisfy the initial condition. In this cas since 4/x is discontinuous at x = 0, the hypotheses of Theorem 1.2.1 are not satisfied and t^2 initial-value problem does not have a unique solution.
 - (b) The differential equation has no solution satisfying $y(0) = y_0, y_0 > 0$.
 - (c) In this case, since $x_0 > 0$, Theorem 1.2.1 applies and the initial-value problem has a unique solution given by $y = x^5 e^x x^4 e^x + cx^4$ where $c = y_0/x_0^4 x_0 e^{x_0} + e^{x_0}$.
- 40. On the interval (-3, 3) the integrating factor is

$$e^{\int x \, dx/(x^2-9)} = e^{-\int x \, dx/(9-x^2)} = e^{\frac{1}{2}\ln(9-x^2)} = \sqrt{9-x^2}$$

54

and so

$$\frac{d}{dx}\left[\sqrt{9-x^2}y\right] = 0$$
 and $y = \frac{c}{\sqrt{9-x^2}}$.

41. We want the general solution to be $y = 3x - 5 + ce^{-x}$. (Rather than e^{-x} , any function that approaches 0 as $x \to \infty$ could be used.) Differentiating we get

$$y' = 3 - ce^{-x} = 3 - (y - 3x + 5) = -y + 3x - 2,$$

so the differential equation y' + y = 3x - 2 has solutions asymptotic to the line y = 3x - 5.

- ± 2 . The left-hand derivative of the function at x = 1 is 1/e and the right-hand derivative at x = 1 is 1 1/e. Thus, y is not differentiable at x = 1.
- 43. (a) Differentiating $y_c = c/x^3$ we get

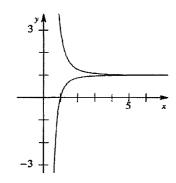
$$y'_c = -\frac{3c}{x^4} = -\frac{3}{x}\frac{c}{x^3} = -\frac{3}{x}y_c$$

so a differential equation with general solution $y_c = c/x^3$ is xy' + 3y = 0. Now

$$xy'_p + 3y_p = x(3x^2) + 3(x^3) = 6x^3$$

so a differential equation with general solution $y = c/x^3 + x^3$ is $xy' + 3y = 6x^3$. This will be a general solution on $(0, \infty)$.

(b) Since $y(1) = 1^3 - 1/1^3 = 0$, an initial condition is y(1) = 0. Since $y(1) = 1^3 + 2/1^3 = 3$, an initial condition is y(1) = 3. In each case the interval of definition is $(0, \infty)$. The initial-value problem $xy' + 3y = 6x^3$, y(0) = 0 has solution $y = x^3$ for $-\infty < x < \infty$. In the figure the lower curve is the graph of $y(x) = x^3 - 1/x^3$, while the upper curve is the graph of $y = x^3 - 2/x^3$.



(c) The first two initial-value problems in part (b) are not unique. For example, setting $y(2) = 2^3 - 1/2^3 = 63/8$, we see that y(2) = 63/8 is also an initial condition leading to the solution $y = x^3 - 1/x^3$.

which is the same as (6) in the text.

- 45. We see by inspection that y = 0 is a solution.
- =5. The solution of the first equation is $x = c_1 e^{-\lambda_1 t}$. From $x(0) = x_0$ we obtain $c_1 = x_0$ and so $x = x_0 e^{-\lambda_1 t}$. The second equation then becomes

$$\frac{dy}{dt} = x_0\lambda_1e^{-\lambda_1t} - \lambda_2y$$
 or $\frac{dy}{dt} + \lambda_2y = x_0\lambda_1e^{-\lambda_1t}$

Exercises 2.3 Linear Equations

which is linear. An integrating factor is $e^{\lambda_2 t}$. Thus

$$\frac{d}{dt} \left[e^{\lambda_2 t} y \right] = x_0 \lambda_1 e^{-\lambda_1 t} e^{\lambda_2 t} = x_0 \lambda_1 e^{(\lambda_2 - \lambda_1)t}$$
$$e^{\lambda_2 t} y = \frac{x_0 \lambda_1}{\lambda_2 - \lambda_1} e^{(\lambda_2 - \lambda_1)t} + c_2$$
$$y = \frac{x_0 \lambda_1}{\lambda_2 - \lambda_1} e^{-\lambda_1 t} + c_2 e^{-\lambda_2 t}.$$

From $y(0) = y_0$ we obtain $c_2 = (y_0\lambda_2 - y_0\lambda_1 - x_0\lambda_1)/(\lambda_2 - \lambda_1)$. The solution is

$$y = \frac{x_0\lambda_1}{\lambda_2 - \lambda_1} e^{-\lambda_1 t} + \frac{y_0\lambda_2 - y_0\lambda_1 - x_0\lambda_1}{\lambda_2 - \lambda_1} e^{-\lambda_2 t}.$$

47. Writing the differential equation as $\frac{dE}{dt} + \frac{1}{RC}E = 0$ we see that an integrating factor is $e^{t/RC}$ Then

$$\frac{d}{dt}[e^{t/RC}E] = 0$$
$$e^{t/RC}E = c$$
$$E = ce^{-t/RC}.$$

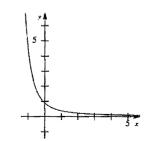
From $E(4) = ce^{-4/RC} = E_0$ we find $c = E_0 e^{4/RC}$. Thus, the solution of the initial-value problem is $E = E_0 e^{4/RC} e^{-t/RC} = E_0 e^{-(t-4)/RC}.$

48. (a) An integrating factor for y' - 2xy = -1 is e^{-x^2} . Thus $\frac{d}{dx}[e^{-x^2}y] = -e^{-x^2}$ $e^{-x^2}y = -\int_0^x e^{-t^2} dt = -\frac{\sqrt{\pi}}{2}\operatorname{erf}(x) + c.$

From $y(0) = \sqrt{\pi}/2$, and noting that $\operatorname{erf}(0) = 0$, we get $c = \sqrt{\pi}/2$. Thus

$$y = e^{x^2} \left(-\frac{\sqrt{\pi}}{2} \operatorname{erf}(x) + \frac{\sqrt{\pi}}{2} \right) = \frac{\sqrt{\pi}}{2} e^{x^2} (1 - \operatorname{erf}(x)) = \frac{\sqrt{\pi}}{2} e^{x^2} \operatorname{erfc}(x).$$

(b) Using a CAS we find $y(2) \approx 0.226339$.



49. (a) An integrating factor for

$$y' + \frac{2}{x}y = \frac{10\sin x}{x^3}$$

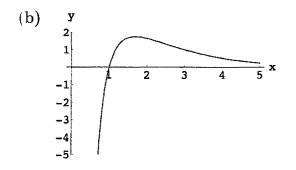
56

is x^2 . Thus

$$\frac{d}{dx}[x^2y] = 10\frac{\sin x}{x}$$
$$x^2y = 10\int_0^x \frac{\sin t}{t} dt + c$$
$$y = 10x^{-2}\operatorname{Si}(x) + cx^{-2}.$$

From y(1) = 0 we get c = -10Si(1). Thus

$$y = 10x^{-2}$$
Si $(x) - 10x^{-2}$ Si $(1) = 10x^{-2}$ (Si $(x) -$ Si (1)).



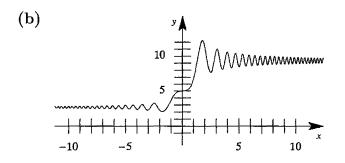
- (c) From the graph in part (b) we see that the absolute maximum occurs around x = 1.7. Using the root-finding capability of a CAS and solving y'(x) = 0 for x we see that the absolute maximum is (1.688, 1.742).
- E1. (a) The integrating factor for $y' (\sin x^2)y = 0$ is $e^{-\int_0^x \sin t^2 dt}$. Then

$$\frac{d}{dx} [e^{-\int_0^x \sin t^2 dt} y] = 0$$
$$e^{-\int_0^x \sin t^2 dt} y = c_1$$
$$y = c_1 e^{\int_0^x \sin t^2 dt}.$$

Letting $t = \sqrt{\pi/2} u$ we have $dt = \sqrt{\pi/2} du$ and

$$\int_0^x \sin t^2 \, dt = \sqrt{\frac{\pi}{2}} \int_0^{\sqrt{2/\pi} x} \sin\left(\frac{\pi}{2} \, u^2\right) du = \sqrt{\frac{\pi}{2}} \, S\left(\sqrt{\frac{2}{\pi}} \, x\right)$$

so $y = c_1 e^{\sqrt{\pi/2} S(\sqrt{2/\pi}x)}$. Using S(0) = 0 and $y(0) = c_1 = 5$ we have $y = 5e^{\sqrt{\pi/2} S(\sqrt{2/\pi}x)}$.



- (c) From the graph we see that as $x \to \infty$, y(x) oscillates with decreasing amplitudes approaching 9.35672. Since $\lim_{x\to\infty} 5S(x) = \frac{1}{2}$, $\lim_{x\to\infty} y(x) = 5e^{\sqrt{\pi/8}} \approx 9.357$, and since $\lim_{x\to-\infty} S(x) = -\frac{1}{2}$, $\lim_{x\to-\infty} y(x) = 5e^{-\sqrt{\pi/8}} \approx 2.672$.
- (d) From the graph in part (b) we see that the absolute maximum occurs around x = 1.7 and the absolute minimum occurs around x = -1.8. Using the root-finding capability of a CAS and solving y'(x) = 0 for x, we see that the absolute maximum is (1.772, 12.235) and the absolute minimum is (-1.772, 2.044).

- 1. Let M = 2x 1 and N = 3y + 7 so that $M_y = 0 = N_x$. From $f_x = 2x 1$ we obtain $f = x^2 x + h(y h'(y)) = 3y + 7$, and $h(y) = \frac{3}{2}y^2 + 7y$. A solution is $x^2 x + \frac{3}{2}y^2 + 7y = c$.
- 2. Let M = 2x + y and N = -x 6y. Then $M_y = 1$ and $N_x = -1$, so the equation is not exact.
- **3.** Let M = 5x + 4y and $N = 4x 8y^3$ so that $M_y = 4 = N_x$. From $f_x = 5x + 4y$ we obtain $f = \frac{5}{2}x^2 + 4xy + h(y)$, $h'(y) = -8y^3$, and $h(y) = -2y^4$. A solution is $\frac{5}{2}x^2 + 4xy 2y^4 = c$.
- 4. Let $M = \sin y y \sin x$ and $N = \cos x + x \cos y y$ so that $M_y = \cos y \sin x = N_x$. From $f_x = \sin y y \sin x$ we obtain $f = x \sin y + y \cos x + h(y)$, h'(y) = -y, and $h(y) = -\frac{1}{2}y^2$. A solution is $x \sin y + y \cos x \frac{1}{2}y^2 = c$.
- 5. Let $M = 2y^2x 3$ and $N = 2yx^2 + 4$ so that $M_y = 4xy = N_x$. From $f_x = 2y^2x 3$ we obtain $f = x^2y^2 3x + h(y)$, h'(y) = 4, and h(y) = 4y. A solution is $x^2y^2 3x + 4y = c$.
- 6. Let $M = 4x^3 3y \sin 3x y/x^2$ and $N = 2y 1/x + \cos 3x$ so that $M_y = -3 \sin 3x 1/x^2$ and $N_x = 1/x^2 3 \sin 3x$. The equation is not exact.
- 7. Let $M = x^2 y^2$ and $N = x^2 2xy$ so that $M_y = -2y$ and $N_x = 2x 2y$. The equation is necessary.

- 5. Let $M = 1 + \ln x + y/x$ and $N = -1 + \ln x$ so that $M_y = 1/x = N_x$. From $f_y = -1 + \ln x$ we obtain $f = -y + y \ln x + h(y)$, $h'(x) = 1 + \ln x$, and $h(y) = x \ln x$. A solution is $-y + y \ln x + x \ln x = c$.
- For the M = $y^3 y^2 \sin x x$ and N = $3xy^2 + 2y \cos x$ so that $M_y = 3y^2 2y \sin x = N_x$. From $f_x = y^3 y^2 \sin x x$ we obtain $f = xy^3 + y^2 \cos x \frac{1}{2}x^2 + h(y)$, h'(y) = 0, and h(y) = 0. A solution is $xy^3 + y^2 \cos x \frac{1}{2}x^2 = c$.
- 11. Let $M = x^3 + y^3$ and $N = 3xy^2$ so that $M_y = 3y^2 = N_x$. From $f_x = x^3 + y^3$ we obtain $f = \frac{1}{4}x^4 + xy^3 + h(y), h'(y) = 0$, and h(y) = 0. A solution is $\frac{1}{4}x^4 + xy^3 = c$.
- 11. Let $M = y \ln y e^{-xy}$ and $N = 1/y + x \ln y$ so that $M_y = 1 + \ln y + xe^{-xy}$ and $N_x = \ln y$. The equation is not exact.
- 12. Let $M = 3x^2y + c^y$ and $N = x^3 + xe^y 2y$ so that $M_y = 3x^2 + e^y = N_x$. From $f_x = 3x^2y + e^y$ we obtain $f = x^3y + xe^y + h(y)$, h'(y) = -2y, and $h(y) = -y^2$. A solution is $x^3y + xe^y y^2 = c$.
- 13. Let $M = y 6x^2 2xe^x$ and N = x so that $M_y = 1 = N_x$. From $f_x = y 6x^2 2xe^x$ we obtain $f = xy 2x^3 2xe^x + 2e^x + h(y)$, h'(y) = 0, and h(y) = 0. A solution is $xy 2x^3 2xe^x + 2e^x = c$.
- 14. Let M = 1 3/x + y and N = 1 3/y + x so that $M_y = 1 = N_x$. From $f_x = 1 3/x + y$ we obtain $f = x - 3\ln|x| + xy + h(y)$, $h'(y) = 1 - \frac{3}{y}$, and $h(y) = y - 3\ln|y|$. A solution is $x + y + xy - 3\ln|xy| = c$.
- 15. Let $M = x^2y^3 1/(1+9x^2)$ and $N = x^3y^2$ so that $M_y = 3x^2y^2 = N_x$. From $f_x = x^2y^3 1/(1+9x^2)$ we obtain $f = \frac{1}{3}x^3y^3 \frac{1}{3}\arctan(3x) + h(y)$, h'(y) = 0, and h(y) = 0. A solution is $x^3y^3 \arctan(3x) = c$.
- 15. Let M = -2y and N = 5y 2x so that $M_y = -2 = N_x$. From $f_x = -2y$ we obtain f = -2xy + h(y), h'(y) = 5y, and $h(y) = \frac{5}{2}y^2$. A solution is $-2xy + \frac{5}{2}y^2 = c$.
- 17. Let $M = \tan x \sin x \sin y$ and $N = \cos x \cos y$ so that $M_y = -\sin x \cos y = N_x$. From $f_x = \tan x \sin x \sin y$ we obtain $f = \ln |\sec x| + \cos x \sin y + h(y)$, h'(y) = 0, and h(y) = 0. A solution is $\ln |\sec x| + \cos x \sin y = c$.
- 15. Let $M = 2y \sin x \cos x y + 2y^2 e^{xy^2}$ and $N = -x + \sin^2 x + 4xy e^{xy^2}$ so that $M_y = 2 \sin x \cos x - 1 + 4xy^3 e^{xy^2} + 4y e^{xy^2} = N_x.$

From $f_x = 2y \sin x \cos x - y + 2y^2 e^{xy^2}$ we obtain $f = y \sin^2 x - xy + 2e^{xy^2} + h(y)$, h'(y) = 0, and h(y) = 0. A solution is $y \sin^2 x - xy + 2e^{xy^2} = c$.

12. Let $M = 4t^3y - 15t^2 - y$ and $N = t^4 + 3y^2 - t$ so that $M_y = 4t^3 - 1 = N_t$. From $f_t = 4t^3y - 15t^2 - y$ we obtain $f = t^4y - 5t^3 - ty + h(y)$, $h'(y) = 3y^2$, and $h(y) = y^3$. A solution is $t^4y - 5t^3 - ty + y^3 = c$.

Let
$$M = 1/t + 1/t^2 - y/(t^2 + y^2)$$
 and $N = ye^y + t/(t^2 + y^2)$ so that $M_y = (y^2 - t^2)/(t^2 + y^2)^2 = N_t$. From $f_l = 1/t + 1/t^2 - y/(t^2 + y^2)$ we obtain $f = \ln|t| - \frac{1}{t} - \arctan\left(\frac{t}{y}\right) + h(y)$, $h'(y) = ye^y$,

Exercises 2.4 Exact Equations

and $h(y) = ye^y - e^y$. A solution is

$$\ln|t| - \frac{1}{t} - \arctan\left(\frac{t}{y}\right) + ye^y - e^y = c.$$

- 21. Let $M = x^2 + 2xy + y^2$ and $N = 2xy + x^2 1$ so that $M_y = 2(x+y) = N_x$. From $f_x = x^2 + 2xy + y^2$ we obtain $f = \frac{1}{3}x^3 + x^2y + xy^2 + h(y)$, h'(y) = -1, and h(y) = -y. The solution is $\frac{1}{3}x^3 + x^2y + xy^2 y = c$. If y(1) = 1 then c = 4/3 and a solution of the initial-value problem is $\frac{1}{3}x^3 + x^2y + xy^2 y = \frac{4}{3}$.
- 22. Let $M = e^x + y$ and $N = 2 + x + ye^y$ so that $M_y = 1 = N_x$. From $f_x = e^x + y$ we obtain $f = e^x + xy + h(y)$, $h'(y) = 2 + ye^y$, and $h(y) = 2y + ye^y y$. The solution is $e^x + xy + 2y + ye^y e^y = c$. If y(0) = 1 then c = 3 and a solution of the initial-value problem is $e^x + xy + 2y + ye^y e^y = 3$.
- 23. Let M = 4y + 2t 5 and N = 6y + 4t 1 so that $M_y = 4 = N_t$. From $f_t = 4y + 2t 5$ we obtain $f = 4ty + t^2 5t + h(y)$, h'(y) = 6y 1, and $h(y) = 3y^2 y$. The solution is $4ty + t^2 5t + 3y^2 y = c$. If y(-1) = 2 then c = 8 and a solution of the initial-value problem is $4ty + t^2 5t + 3y^2 y = 8$.
- 24. Let $M = t/2y^4$ and $N = (3y^2 t^2)/y^5$ so that $M_y = -2t/y^5 = N_t$. From $f_t = t/2y^4$ we obtain $f = \frac{t^2}{4y^4} + h(y)$, $h'(y) = \frac{3}{y^3}$, and $h(y) = -\frac{3}{2y^2}$. The solution is $\frac{t^2}{4y^4} \frac{3}{2y^2} = c$. If y(1) = 1 then c = -5/4 and a solution of the initial-value problem is $\frac{t^2}{4y^4} \frac{3}{2y^2} = -\frac{5}{4}$.
- 25. Let $M = y^2 \cos x 3x^2y 2x$ and $N = 2y \sin x x^3 + \ln y$ so that $M_y = 2y \cos x 3x^2 = N_x$. From $f_x = y^2 \cos x 3x^2y 2x$ we obtain $f = y^2 \sin x x^3y x^2 + h(y)$, $h'(y) = \ln y$, and $h(y) = y \ln y y$. The solution is $y^2 \sin x x^3y x^2 + y \ln y y = c$. If y(0) = e then c = 0 and a solution of the initial-value problem is $y^2 \sin x x^3y x^2 + y \ln y y = 0$.
- 26. Let $M = y^2 + y \sin x$ and $N = 2xy \cos x 1/(1+y^2)$ so that $M_y = 2y + \sin x = N_x$. From $f_x = y^2 + y \sin x$ we obtain $f = xy^2 y \cos x + h(y)$, $h'(y) = \frac{-1}{1+y^2}$, and $h(y) = -\tan^{-1} y$. The solution is $xy^2 y \cos x \tan^{-1} y = c$. If y(0) = 1 then $c = -1 \pi/4$ and a solution of the initial-value problem is $xy^2 y \cos x \tan^{-1} y = -1 \frac{\pi}{4}$.
- 27. Equating $M_y = 3y^2 + 4kxy^3$ and $N_x = 3y^2 + 40xy^3$ we obtain k = 10.
- **28.** Equating $M_y = 18xy^2 \sin y$ and $N_x = 4kxy^2 \sin y$ we obtain k = 9/2.
- **29.** Let $M = -x^2y^2 \sin x + 2xy^2 \cos x$ and $N = 2x^2y \cos x$ so that $M_y = -2x^2y \sin x + 4xy \cos x = N_z$ From $f_y = 2x^2y \cos x$ we obtain $f = x^2y^2 \cos x + h(y)$, h'(y) = 0, and h(y) = 0. A solution of the differential equation is $x^2y^2 \cos x = c$.
- 30. Let $M = (x^2 + 2xy y^2) / (x^2 + 2xy + y^2)$ and $N = (y^2 + 2xy x^2) / (y^2 + 2xy + x^2)$ so that $M_y = -4xy/(x+y)^3 = N_x$. From $f_x = (x^2 + 2xy + y^2 2y^2) / (x+y)^2$ we obtain

60

 $f = x + \frac{2y^2}{x+y} + h(y)$, h'(y) = -1, and h(y) = -y. A solution of the differential equation is $x^2 + y^2 = c(x+y)$.

- 31. We note that $(M_y N_x)/N = 1/x$, so an integrating factor is $e^{\int dx/x} = x$. Let $M = 2xy^2 z^2$ and $N = 2x^2y$ so that $M_y = 4xy = N_x$. From $f_x = 2xy^2 + 3x^2$ we obtain $f = x^2y^2 - z^2 - z^2$. h'(y) = 0, and h(y) = 0. A solution of the differential equation is $x^2y^2 + x^3 = c$.
- 32. We note that $(M_y N_x)/N = 1$, so an integrating factor is $e^{\int dx} = e^x$. Let $M = xye^x y^2e^x y^2e^x$ and $N = xe^x + 2ye^x$ so that $M_y = xe^x + 2ye^x + e^x = N_x$. From $f_y = xe^x + 2ye^x$ we determ $f = xye^x + y^2e^x + h(x)$, h'(y) = 0, and h(y) = 0. A solution of the differential equation is $xye^x + y^2e^x = c$.
- 33. We note that $(N_x M_y)/M = 2/y$, so an integrating factor is $e^{\int 2dy/y} = y^2$. Let $M = 6xy^3$ and $N = 4y^3 + 9x^2y^2$ so that $M_y = 18xy^2 = N_x$. From $f_x = 6xy^3$ we obtain $f = 3x^2y^3 1$. $h'(y) = 4y^3$, and $h(y) = y^4$. A solution of the differential equation is $3x^2y^3 + y^4 = c$.
- 34. We note that $(M_y N_x)/N = -\cot x$, so an integrating factor is $e^{-\int \cot x \, dx} = \csc x$. Let $M = \cos x \csc x = \cot x$ and $N = (1 + 2/y) \sin x \csc x = 1 + 2/y$, so that $M_y = 0 = N_x$. From $f_x = \cot x$ we obtain $f = \ln(\sin x) + h(y)$, h'(y) = 1 + 2/y, and $h(y) = y + \ln y^2$. A solution of the differential equation is $\ln(\sin x) + y + \ln y^2 = c$.
- 35. We note that $(M_y N_x)/N = 3$, so an integrating factor is $e^{\int 3 dx} = e^{3x}$. Let

$$M = (10 - 6y + e^{-3x})e^{3x} = 10e^{3x} - 6ye^{3x} + 1$$

and

$$N = -2e^{3x}$$

so that $M_y = -6e^{3x} = N_x$. From $f_x = 10e^{3x} - 6ye^{3x} + 1$ we obtain $f = \frac{10}{3}e^{3x} - 2ye^{3x} + x + h(y)$. h'(y) = 0, and h(y) = 0. A solution of the differential equation is $\frac{10}{3}e^{3x} - 2ye^{3x} + x = c$.

36. We note that $(N_x - M_y)/M = -3/y$, so an integrating factor is $e^{-3\int dy/y} = 1/y^3$. Let

$$M = (y^2 + xy^3)/y^3 = 1/y + x$$

and

$$N = (5y^2 - xy + y^3 \sin y)/y^3 = 5/y - x/y^2 + \sin y,$$

so that $M_y = -1/y^2 = N_x$. From $f_x = 1/y + x$ we obtain $f = x/y + \frac{1}{2}x^2 + h(y)$, $h'(y) = 5/y + \sin y$. and $h(y) = 5 \ln |y| - \cos y$. A solution of the differential equation is $x/y + \frac{1}{2}x^2 + 5 \ln |y| - \cos y = c$.

37. We note that $(M_y - N_x)/N = 2x/(4 + x^2)$, so an integrating factor is $e^{-2\int x \, dx/(4+x^2)} = 1/(4+x^2)$. Let $M = x/(4+x^2)$ and $N = (x^2y + 4y)/(4+x^2) = y$, so that $M_y = 0 = N_x$. From $f_x = x(4+x^2)$ we obtain $f = \frac{1}{2}\ln(4+x^2) + h(y)$, h'(y) = y, and $h(y) = \frac{1}{2}y^2$. A solution of the differential equation is $\frac{1}{2}\ln(4+x^2) + \frac{1}{2}y^2 = c$.

Exercises 2.4 Exact Equations

38. We note that $(M_y - N_x)/N = -3/(1+x)$, so an integrating factor is $e^{-3\int dx/(1+x)} = 1/(1+x)^3$. Let $M = (x^2+y^2-5)/(1+x)^3$ and $N = -(y+xy)/(1+x)^3 = -y/(1+x)^2$, so that $M_y = 2y/(1+x)^3 = N$ From $f_y = -y/(1+x)^2$ we obtain $f = -\frac{1}{2}y^2/(1+x)^2 + h(x)$, $h'(x) = (x^2-5)/(1+x)^3$, all $h(x) = 2/(1+x)^2 + 2/(1+x) + \ln|1+x|$. A solution of the differential equation is

$$-\frac{y^2}{2(1+x)^2} + \frac{2}{(1+x)^2} + \frac{2}{(1+x)} + \ln|1+x| = c.$$

39. (a) Implicitly differentiating $x^3 + 2x^2y + y^2 = c$ and solving for dy/dx we obtain

$$3x^{2} + 2x^{2}\frac{dy}{dx} + 4xy + 2y\frac{dy}{dx} = 0 \quad \text{and} \quad \frac{dy}{dx} = -\frac{3x^{2} + 4xy}{2x^{2} + 2y}$$

By writing the last equation in differential form we get $(4xy + 3x^2)dx + (2y + 2x^2)dy = 0$.

-4 -2

y1

- (b) Setting x = 0 and y = -2 in $x^3 + 2x^2y + y^2 = c$ we find c = 4, and setting x = y = 1 we als find c = 4. Thus, both initial conditions determine the same implicit solution.
- (c) Solving $x^3 + 2x^2y + y^2 = 4$ for y we get

$$y_1(x) = -x^2 - \sqrt{4 - x^3 + x^4}$$

and

$$y_2(x) = -x^2 + \sqrt{4 - x^3 + x^4}$$

Observe in the figure that $y_1(0) = -2$ and $y_2(1) = 1$.

- 40. To see that the equations are not equivalent consider dx = -(x/y)dy. An integrating factor is $\mu(x, y) = y$ resulting in y dx + x dy = 0. A solution of the latter equation is y = 0, but this is not solution of the original equation.
- 41. The explicit solution is $y = \sqrt{(3 + \cos^2 x)/(1 x^2)}$. Since $3 \pm \cos^2 x > 0$ for all x we must have $1 x^2 > 0$ or -1 < x < 1. Thus, the interval of definition is (-1, 1).
- 42. (a) Since $f_y = N(x,y) = xe^{xy} + 2xy + 1/x$ we obtain $f = e^{xy} + xy^2 + \frac{y}{x} + h(x)$ so the $f_x = ye^{xy} + y^2 \frac{y}{x^2} + h'(x)$. Let $M(x,y) = ye^{xy} + y^2 \frac{y}{x^2}$.
 - (b) Since $f_x = M(x,y) = y^{1/2}x^{-1/2} + x(x^2+y)^{-1}$ we obtain $f = 2y^{1/2}x^{1/2} + \frac{1}{2}\ln|x^2+y| + g(y^2+y)^{-1}$ so that $f_y = y^{-1/2}x^{1/2} + \frac{1}{2}(x^2+y)^{-1} + g'(x)$. Let $N(x,y) = y^{-1/2}x^{1/2} + \frac{1}{2}(x^2+y)^{-1}$.
- **43.** First note that

$$d\left(\sqrt{x^{2}+y^{2}}\right) = \frac{x}{\sqrt{x^{2}+y^{2}}} \, dx + \frac{y}{\sqrt{x^{2}+y^{2}}} \, dy$$

Then $x dx + y dy = \sqrt{x^2 + y^2} dx$ becomes

$$\frac{x}{\sqrt{x^2 + y^2}} \, dx + \frac{y}{\sqrt{x^2 + y^2}} \, dy = d\left(\sqrt{x^2 + y^2}\right) = dx.$$

The left side is the total differential of $\sqrt{x^2 + y^2}$ and the right side is the total differential of x + c. Thus $\sqrt{x^2 + y^2} = x + c$ is a solution of the differential equation.

- 44. To see that the statement is true, write the separable equation as -g(x) dx + dy/h(y) = 0. Identifying M = -g(x) and N = 1/h(y), we see that $M_y = 0 = N_x$, so the differential equation is exact.
- 45. (a) In differential form we have $(v^2 32x)dx + xv dv = 0$. This is not an exact form, but $\mu(x) = x$ is an integrating factor. Multiplying by x we get $(xv^2 32x^2)dx + x^2v dv = 0$. This form is the total differential of $u = \frac{1}{2}x^2v^2 \frac{32}{3}x^3$, so an implicit solution is $\frac{1}{2}x^2v^2 \frac{32}{3}x^3 = c$. Letting x = 3 and v = 0 we find c = -288. Solving for v we get

$$v = 8\sqrt{\frac{x}{3} - \frac{9}{x^2}}$$

(b) The chain leaves the platform when x = 8, so the velocity at this time is

$$v(8) = 8\sqrt{\frac{8}{3} - \frac{9}{64}} \approx 12.7$$
 ft/s.

 $\pm 5.$ (a) Letting

$$M(x,y) = \frac{2xy}{(x^2 + y^2)^2}$$
 and $N(x,y) = 1 + \frac{y^2 - x^2}{(x^2 + y^2)^2}$

we compute

$$M_y = \frac{2x^3 - 8xy^2}{(x^2 + y^2)^3} = N_x,$$

so the differential equation is exact. Then we have

$$\frac{\partial f}{\partial x} = M(x,y) = \frac{2xy}{(x^2 + y^2)^2} = 2xy(x^2 + y^2)^{-2}$$
$$f(x,y) = -y(x^2 + y^2)^{-1} + g(y) = -\frac{y}{x^2 + y^2} + g(y)$$
$$\frac{\partial f}{\partial y} = \frac{y^2 - x^2}{(x^2 + y^2)^2} + g'(y) = N(x,y) = 1 + \frac{y^2 - x^2}{(x^2 + y^2)^2}.$$

Thus, g'(y) = 1 and g(y) = y. The solution is $y - \frac{y}{x^2 + y^2} = c$. When c = 0 the solution is $x^2 + y^2 = 1$.

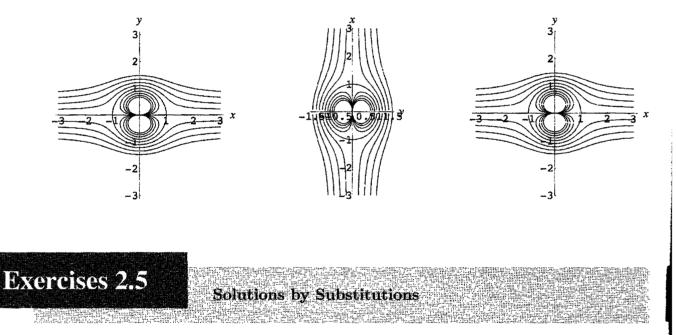
(b) The first graph below is obtained in *Mathematica* using $f(x,y) = y - y/(x^2 + y^2)$ and

 $ContourPlot[f[x, y], \{x, -3, 3\}, \{y, -3, 3\},$

The second graph uses

$$x = -\sqrt{\frac{y^3 - cy^2 - y}{c - y}}$$
 and $x = \sqrt{\frac{y^3 - cy^2 - y}{c - y}}$.

In this case the x-axis is vertical and the y-axis is horizontal. To obtain the third graph, solve $y - y/(x^2 + y^2) = c$ for y in a CAS. This appears to give one real and two complet solutions. When graphed in *Mathematica* however, all three solutions contribute to the graph. This is because the solutions involve the square root of expressions containing c. For second values of c the expression is negative, causing an apparent complex solution to actually be re-



1. Letting y = ux we have

$$(x - ux) dx + x(u dx + x du) = 0$$
$$dx + x du = 0$$
$$\frac{dx}{x} + du = 0$$
$$\ln |x| + u = c$$
$$x \ln |x| + y = cx.$$

2. Letting y = ux we have

$$(x + ux) dx + x(u dx + x du) = 0$$

(1 + 2u) dx + x du = 0
$$\frac{dx}{x} + \frac{du}{1 + 2u} = 0$$

$$\ln |x| + \frac{1}{2} \ln |1 + 2u| = c$$

$$x^{2} \left(1 + 2\frac{y}{x}\right) = c_{1}$$

$$x^{2} + 2xy = c_{1}.$$

3. Letting x = vy we have

$$vy(v\,dy + y\,dv) + (y - 2vy)\,dy = 0$$

$$vy^2\,dv + y\,\left(v^2 - 2v + 1\right)dy = 0$$

$$\frac{v\,dv}{(v-1)^2} + \frac{dy}{y} = 0$$

$$\ln|v-1| - \frac{1}{v-1} + \ln|y| = c$$

$$\ln\left|\frac{x}{y} - 1\right| - \frac{1}{x/y - 1} + \ln y = c$$

$$(x - y)\ln|x - y| - y = c(x - y).$$

4. Letting x = vy we have

$$y(v \, dy + y \, dv) - 2(vy + y) \, dy = 0$$

$$y \, dv - (v + 2) \, dy = 0$$

$$\frac{dv}{v + 2} - \frac{dy}{y} = 0$$

$$\ln |v + 2| - \ln |y| = c$$

$$\ln \left|\frac{x}{y} + 2\right| - \ln |y| = c$$

$$x + 2y = c_1 y^2.$$

Exercises 2.5 Solutions by Substitutions

5. Letting y = ux we have

$$(u^2x^2 + ux^2) dx - x^2(u dx + x du) = 0$$
$$u^2 dx - x du = 0$$
$$\frac{dx}{x} - \frac{du}{u^2} = 0$$
$$\ln |x| + \frac{1}{u} = c$$
$$\ln |x| + \frac{x}{y} = c$$
$$y \ln |x| + x = cy.$$

6. Letting y = ux and using partial fractions, we have

$$(u^{2}x^{2} + ux^{2}) dx + x^{2}(u dx + x du) = 0$$

$$x^{2} (u^{2} + 2u) dx + x^{3} du = 0$$

$$\frac{dx}{x} + \frac{du}{u(u+2)} = 0$$

$$\ln|x| + \frac{1}{2} \ln|u| - \frac{1}{2} \ln|u+2| = c$$

$$\frac{x^{2}u}{u+2} = c_{1}$$

$$x^{2}\frac{y}{x} = c_{1} \left(\frac{y}{x} + 2\right)$$

$$x^{2}y = c_{1}(y+2x)$$

7. Letting y = ux we have

$$(ux - x) dx - (ux + x)(u dx + x du) = 0$$
$$(u^{2} + 1) dx + x(u + 1) du = 0$$
$$\frac{dx}{x} + \frac{u + 1}{u^{2} + 1} du = 0$$
$$\ln |x| + \frac{1}{2} \ln (u^{2} + 1) + \tan^{-1} u = c$$
$$\ln x^{2} \left(\frac{y^{2}}{x^{2}} + 1\right) + 2 \tan^{-1} \frac{y}{x} = c_{1}$$
$$\ln (x^{2} + y^{2}) + 2 \tan^{-1} \frac{y}{x} = c_{1}.$$

66

5. Letting y = ux we have

$$(x + 3ux) dx - (3x + ux)(u dx + x du) = 0$$

$$(u^{2} - 1) dx + x(u + 3) du = 0$$

$$\frac{dx}{x} + \frac{u + 3}{(u - 1)(u + 1)} du = 0$$

$$\ln |x| + 2\ln |u - 1| - \ln |u + 1| = c$$

$$\frac{x(u - 1)^{2}}{u + 1} = c_{1}$$

$$x \left(\frac{y}{x} - 1\right)^{2} = c_{1} \left(\frac{y}{x} + 1\right)$$

$$(y - x)^{2} = c_{1}(y + x).$$

9. Letting y = ux we have

,

$$\begin{aligned} -ux \, dx + (x + \sqrt{u} \, x)(u \, dx + x \, du) &= 0\\ (x^2 + x^2 \sqrt{u} \,) \, du + x u^{3/2} \, dx &= 0\\ \left(u^{-3/2} + \frac{1}{u} \right) du + \frac{dx}{x} &= 0\\ -2u^{-1/2} + \ln|u| + \ln|x| &= c\\ \ln|y/x| + \ln|x| &= 2\sqrt{x/y} + c\\ y(\ln|y| - c)^2 &= 4x. \end{aligned}$$

11. Letting y = ux we have

$$\left(ux + \sqrt{x^2 - (ux)^2} \right) dx - x(udx + xdu) du = 0 \sqrt{x^2 - u^2 x^2} dx - x^2 du = 0 x\sqrt{1 - u^2} dx - x^2 du = 0, \quad (x > 0) \frac{dx}{x} - \frac{du}{\sqrt{1 - u^2}} = 0 \ln x - \sin^{-1} u = c \sin^{-1} u = \ln x + c_1$$

Exercises 2.5 Solutions by Substitutions

$$\sin^{-1} \frac{y}{x} = \ln x + c_2$$
$$\frac{y}{x} = \sin(\ln x + c_2)$$
$$y = x \sin(\ln x + c_2).$$

See Problem 33 in this section for an analysis of the solution.

11. Letting y = ux we have

$$(x^{3} - u^{3}x^{3}) dx + u^{2}x^{3}(u dx + x du) = 0$$
$$dx + u^{2}x du = 0$$
$$\frac{dx}{x} + u^{2} du = 0$$
$$\ln |x| + \frac{1}{3}u^{3} = c$$
$$3x^{3} \ln |x| + y^{3} = c_{1}x^{3}.$$

Using y(1) = 2 we find $c_1 = 8$. The solution of the initial-value problem is $3x^3 \ln |x| + y^3 = 8x^3$. 12. Letting y = ux we have

$$(x^{2} + 2u^{2}x^{2})dx - ux^{2}(u \, dx + x \, du) = 0$$
$$x^{2}(1 + u^{2})dx - ux^{3} \, du = 0$$
$$\frac{dx}{x} - \frac{u \, du}{1 + u^{2}} = 0$$
$$\ln |x| - \frac{1}{2}\ln(1 + u^{2}) = c$$
$$\frac{x^{2}}{1 + u^{2}} = c_{1}$$
$$x^{4} = c_{1}(x^{2} + y^{2}).$$

Using y(-1) = 1 we find $c_1 = 1/2$. The solution of the initial-value problem is $2x^4 = y^2 + x^2$. 13. Letting y = ux we have

$$(x + uxe^{u}) dx - xe^{u}(u dx + x du) = 0$$
$$dx - xe^{u} du = 0$$
$$\frac{dx}{x} - e^{u} du = 0$$

68

$$\ln |x| - e^u = c$$
$$\ln |x| - e^{y/x} = c.$$

Using y(1) = 0 we find c = -1. The solution of the initial-value problem is $\ln |x| = e^{y/x} - 1$. 14. Letting x = vy we have

$$y(v \, dy + y \, dv) + vy(\ln vy - \ln y - 1) \, dy = 0$$
$$y \, dv + v \ln v \, dy = 0$$
$$\frac{dv}{v \ln v} + \frac{dy}{y} = 0$$
$$\ln |\ln |v|| + \ln |y| = c$$
$$y \ln \left|\frac{x}{y}\right| = c_1.$$

Using y(1) = e we find $c_1 = -e$. The solution of the initial-value problem is $y \ln \left| \frac{x}{y} \right| = -e$.

15. From $y' + \frac{1}{x}y = \frac{1}{x}y^{-2}$ and $w = y^3$ we obtain $\frac{dw}{dx} + \frac{3}{x}w = \frac{3}{x}$. An integrating factor is x^3 so that $x^3w = x^3 + c$ or $y^3 = 1 + cx^{-3}$.

16. From $y' - y = e^x y^2$ and $w = y^{-1}$ we obtain $\frac{dw}{dx} + w = -e^x$. An integrating factor is e^x so that $e^x w = -\frac{1}{2}e^{2x} + c$ or $y^{-1} = -\frac{1}{2}e^x + ce^{-x}$.

- : From $y' + y = xy^4$ and $w = y^{-3}$ we obtain $\frac{dw}{dx} 3w = -3x$. An integrating factor is e^{-3x} so that $e^{-3x}w = xe^{-3x} + \frac{1}{3}e^{-3x} + c$ or $y^{-3} = x + \frac{1}{3} + ce^{3x}$.
- 15. From $y' \left(1 + \frac{1}{x}\right)y = y^2$ and $w = y^{-1}$ we obtain $\frac{dw}{dx} + \left(1 + \frac{1}{x}\right)w = -1$. An integrating factor is xe^x so that $xe^xw = -xe^x + e^x + c$ or $y^{-1} = -1 + \frac{1}{x} + \frac{c}{x}e^{-x}$.
- 19. From $y' \frac{1}{t}y = -\frac{1}{t^2}y^2$ and $w = y^{-1}$ we obtain $\frac{dw}{dt} + \frac{1}{t}w = \frac{1}{t^2}$. An integrating factor is t so that $tw = \ln t + c$ or $y^{-1} = \frac{1}{t}\ln t + \frac{c}{t}$. Writing this in the form $\frac{t}{y} = \ln t + c$, we see that the solution can also be expressed in the form $e^{t/y} = c_1 t$.

$$\text{From } y' + \frac{2}{3(1+t^2)}y = \frac{2t}{3(1+t^2)}y^4 \text{ and } w = y^{-3} \text{ we obtain } \frac{dw}{dt} - \frac{2t}{1+t^2}w = \frac{-2t}{1+t^2}. \text{ An integrating factor is } \frac{1}{1+t^2} \text{ so that } \frac{w}{1+t^2} = \frac{1}{1+t^2} + c \text{ or } y^{-3} = 1 + c(1+t^2).$$

21. From
$$y' - \frac{2}{x}y = \frac{3}{x^2}y^4$$
 and $w = y^{-3}$ we obtain $\frac{dw}{dx} + \frac{6}{x}w = -\frac{9}{x^2}$. An integrating factor is x^6 so that $x^6w = -\frac{9}{5}x^5 + c$ or $y^{-3} = -\frac{9}{5}x^{-1} + cx^{-6}$. If $y(1) = \frac{1}{2}$ then $c = \frac{49}{5}$ and $y^{-3} = -\frac{9}{5}x^{-1} + \frac{49}{5}x^{-6}$.

22. From
$$y' + y = y^{-1/2}$$
 and $w = y^{3/2}$ we obtain $\frac{dw}{dx} + \frac{3}{2}w = \frac{3}{2}$. An integrating factor is $e^{3x/2}$ so that $e^{3x/2}w = e^{3x/2} + c$ or $y^{3/2} = 1 + ce^{-3x/2}$. If $y(0) = 4$ then $c = 7$ and $y^{3/2} = 1 + 7e^{-3x/2}$.

23. Let
$$u = x + y + 1$$
 so that $du/dx = 1 + dy/dx$. Then $\frac{du}{dx} - 1 = u^2$ or $\frac{1}{1+u^2}du = dx$. Thu-
tan⁻¹ $u = x + c$ or $u = \tan(x+c)$, and $x + y + 1 = \tan(x+c)$ or $y = \tan(x+c) - x - 1$.

- 24. Let u = x + y so that du/dx = 1 + dy/dx. Then $\frac{du}{dx} 1 = \frac{1 u}{u}$ or $u \, du = dx$. Thus $\frac{1}{2}u^2 = x + .$ or $u^2 = 2x + c_1$, and $(x + y)^2 = 2x + c_1$.
- 25. Let u = x + y so that du/dx = 1 + dy/dx. Then $\frac{du}{dx} 1 = \tan^2 u$ or $\cos^2 u \, du = dx$. Thus $\frac{1}{2}u + \frac{1}{4}\sin 2u = x + c$ or $2u + \sin 2u = 4x + c_1$, and $2(x+y) + \sin 2(x+y) = 4x + c_1$ or $2y + \sin 2(x+y) = 2x + c_1$.

26. Let
$$u = x + y$$
 so that $du/dx = 1 + dy/dx$. Then $\frac{du}{dx} - 1 = \sin u$ or $\frac{1}{1 + \sin u} du = dx$. Multiplying by $(1 - \sin u)/(1 - \sin u)$ we have $\frac{1 - \sin u}{\cos^2 u} du = dx$ or $(\sec^2 u - \sec u \tan u)du = dx$. Thut $\tan u - \sec u = x + c$ or $\tan(x + y) - \sec(x + y) = x + c$.

- 27. Let u = y 2x + 3 so that du/dx = dy/dx 2. Then $\frac{du}{dx} + 2 = 2 + \sqrt{u}$ or $\frac{1}{\sqrt{u}} du = dx$. Thus $2\sqrt{u} = x + c$ and $2\sqrt{y 2x + 3} = x + c$.
- 28. Let u = y x + 5 so that du/dx = dy/dx 1. Then $\frac{du}{dx} + 1 = 1 + e^u$ or $e^{-u}du = dx$. Thus $-e^{-u} = x + c$ and $-e^{y-x+5} = x + c$.

29. Let
$$u = x + y$$
 so that $du/dx = 1 + dy/dx$. Then $\frac{du}{dx} - 1 = \cos u$ and $\frac{1}{1 + \cos u} du = dx$. Now
$$\frac{1}{1 + \cos u} = \frac{1 - \cos u}{1 - \cos^2 u} = \frac{1 - \cos u}{\sin^2 u} = \csc^2 u - \csc u \cot u$$

so we have $\int (\csc^2 u - \csc u \cot u) du = \int dx$ and $-\cot u + \csc u = x + c$. Thus $-\cot(x+y) + \csc(x+y) = x + c$. Setting x = 0 and $y = \pi/4$ we obtain $c = \sqrt{2} - 1$. The solution is

$$\csc(x+y) - \cot(x+y) = x + \sqrt{2} - 1.$$

30. Let u = 3x + 2y so that du/dx = 3 + 2 dy/dx. Then $\frac{du}{dx} = 3 + \frac{2u}{u+2} = \frac{5u+6}{u+2}$ and $\frac{u+2}{5u+6} du = dx$. Now by long division

$$\frac{u+2}{5u+6} = \frac{1}{5} + \frac{4}{25u+30}$$

70

so we have

$$\int \left(\frac{1}{5} + \frac{4}{25u+30}\right) du = dx$$

and $\frac{1}{5}u + \frac{4}{25}\ln|25u + 30| = x + c$. Thus

$$\frac{1}{5}(3x+2y) + \frac{4}{25}\ln|75x+50y+30| = x+c.$$

Setting x = -1 and y = -1 we obtain $c = \frac{4}{25} \ln 95$. The solution is

$$\frac{1}{5}(3x+2y) + \frac{4}{25}\ln|75x+50y+30| = x + \frac{4}{25}\ln 95$$

 $\Im \mathbf{r}$

$$5y - 5x + 2\ln|75x + 50y + 30| = 2\ln 95.$$

51. We write the differential equation M(x,y)dx + N(x,y)dy = 0 as dy/dx = f(x,y) where

$$f(x,y) = -\frac{M(x,y)}{N(x,y)}.$$

The function f(x, y) must necessarily be homogeneous of degree 0 when M and N are homogeneous of degree α . Since M is homogeneous of degree α , $M(tx, ty) = t^{\alpha}M(x, y)$, and letting t = 1/x we have

$$M(1, y/x) = \frac{1}{x^{\alpha}} M(x, y)$$
 or $M(x, y) = x^{\alpha} M(1, y/x).$

Thus

$$\frac{dy}{dx} = f(x,y) = -\frac{x^{\alpha}M(1,y/x)}{x^{\alpha}N(1,y/x)} = -\frac{M(1,y/x)}{N(1,y/x)} = F\left(\frac{y}{x}\right).$$

12. Rewrite $(5x^2 - 2y^2)dx - xy \, dy = 0$ as

$$xy\,\frac{dy}{dx} = 5x^2 - 2y^2$$

and divide by xy, so that

$$\frac{dy}{dx} = 5\frac{x}{y} - 2\frac{y}{x}$$

We then identify

$$F\left(\frac{y}{x}\right) = 5\left(\frac{y}{x}\right)^{-1} - 2\left(\frac{y}{x}\right).$$

- 13. (a) By inspection y = x and y = -x are solutions of the differential equation and not members of the family $y = x \sin(\ln x + c_2)$.
 - (b) Letting x = 5 and y = 0 in $\sin^{-1}(y/x) = \ln x + c_2$ we get $\sin^{-1} 0 = \ln 5 + c$ or $c = -\ln 5$. Then $\sin^{-1}(y/x) = \ln x \ln 5 = \ln(x/5)$. Because the range of the arcsine function is $[-\pi/2, \pi/2]$ we

Exercises 2.5 Solutions by Substitutions

must have

$$-\frac{\pi}{2} \le \ln \frac{\pi}{5} \le \frac{\pi}{2}$$
$$e^{-\pi/2} \le \frac{x}{5} \le e^{\pi/2}$$
$$5e^{-\pi/2} \le x \le 5e^{\pi/2}.$$

 α

 π

У

20 15 10

10 15

The interval of definition of the solution is approximately [1.04, 24.05].

 π

34. As $x \to -\infty$, $e^{6x} \to 0$ and $y \to 2x + 3$. Now write $(1 + ce^{6x})/(1 - ce^{6x})$ as $(e^{-6x} + c)/(e^{-6x} - C)$. Then, as $x \to \infty$, $e^{-6x} \to 0$ and $y \to 2x - 3$.

35. (a) The substitutions $y = y_1 + u$ and

$$\frac{dy}{dx} = \frac{dy_1}{dx} + \frac{du}{dx}$$

lead to

$$\frac{dy_1}{dx} + \frac{du}{dx} = P + Q(y_1 + u) + R(y_1 + u)^2$$
$$= P + Qy_1 + Ry_1^2 + Qu + 2y_1Ru + Ru^2$$

or

$$\frac{du}{dx} - (Q + 2y_1 R)u = Ru^2.$$

This is a Bernoulli equation with n = 2 which can be reduced to the linear equation

$$\frac{dw}{dx} + (Q + 2y_1R)w = -R$$

by the substitution $w = u^{-1}$.

- (b) Identify $P(x) = -4/x^2$, Q(x) = -1/x, and R(x) = 1. Then $\frac{dw}{dx} + \left(-\frac{1}{x} + \frac{4}{x}\right)w = -1$. Integrating factor is x^3 so that $x^3w = -\frac{1}{4}x^4 + c$ or $u = \left[-\frac{1}{4}x + cx^{-3}\right]^{-1}$. Thus, $y = \frac{2}{x} + u$.
- **36.** Write the differential equation in the form $x(y'/y) = \ln x + \ln y$ and let $u = \ln y$. Then du/dx = y' = u and the differential equation becomes $x(du/dx) = \ln x + u$ or $du/dx u/x = (\ln x)/x$, which is first-order and linear. An integrating factor is $e^{-\int dx/x} = 1/x$, so that (using integration by part-

$$\frac{d}{dx}\left[\frac{1}{x}u\right] = \frac{\ln x}{x^2} \quad \text{and} \quad \frac{u}{x} = -\frac{1}{x} - \frac{\ln x}{x} + c$$

The solution is

$$\ln y = -1 - \ln x + cx$$
 or $y = \frac{e^{cx-1}}{x}$

37. Write the differential equation as

$$\frac{dv}{dx} + \frac{1}{x}v = 32v^{-1},$$

and let $u = v^2$ or $v = u^{1/2}$. Then

$$\frac{dv}{dx} = \frac{1}{2}u^{-1/2}\frac{du}{dx},$$

and substituting into the differential equation, we have

$$\frac{1}{2}u^{-1/2}\frac{du}{dx} + \frac{1}{x}u^{1/2} = 32u^{-1/2} \quad \text{or} \quad \frac{du}{dx} + \frac{2}{x}u = 64.$$

The latter differential equation is linear with integrating factor $c^{\int (2/x) dx} = x^2$, so

$$\frac{d}{dx}\left[x^2u\right] = 64x^2$$

 \cdot nd

$$x^{2}u = \frac{64}{3}x^{3} + c$$
 or $v^{2} = \frac{64}{3}x + \frac{c}{x^{2}}$

Write the differential equation as $dP/dt - aP = -bP^2$ and let $u = P^{-1}$ or $P = u^{-1}$. Then

$$\frac{dp}{dt} = -u^{-2} \, \frac{du}{dt} \,,$$

and substituting into the differential equation, we have

$$-u^{-2}\frac{du}{dt} - au^{-1} = -bu^{-2}$$
 or $\frac{du}{dt} + au = b.$

The latter differential equation is linear with integrating factor $e^{\int a \, dt} = e^{at}$, so

$$\frac{d}{dt}\left[e^{at}u\right] = be^{at}$$

..11d

$$e^{at}u = \frac{b}{a}e^{at} + c$$

$$e^{at}P^{-1} = \frac{b}{a}e^{at} + c$$

$$P^{-1} = \frac{b}{a} + ce^{-at}$$

$$P = \frac{1}{b/a + ce^{-at}} = \frac{a}{b + c_1e^{-at}}.$$

Exercises 2.6 A Numerical Method

1. We identify f(x, y) = 2x - 3y + 1. Then, for h = 0.1,

$$y_{n+1} = y_n + 0.1(2x_n - 3y_n + 1) = 0.2x_n + 0.7y_n + 0.1,$$

and

$$y(1.1) \approx y_1 = 0.2(1) + 0.7(5) + 0.1 = 3.8$$

 $y(1.2) \approx y_2 = 0.2(1.1) + 0.7(3.8) + 0.1 = 2.98.$

For h = 0.05,

$$y_{n-1} = y_n + 0.05(2x_n - 3y_n + 1) = 0.1x_n + 0.85y_n + 0.05y_n + 0.05y$$

and

$$y(1.05) \approx y_1 = 0.1(1) + 0.85(5) + 0.05 = 4.4$$
$$y(1.1) \approx y_2 = 0.1(1.05) + 0.85(4.4) + 0.05 = 3.895$$
$$y(1.15) \approx y_3 = 0.1(1.1) + 0.85(3.895) + 0.05 = 3.47075$$
$$y(1.2) \approx y_4 = 0.1(1.15) + 0.85(3.47075) + 0.05 = 3.11514.$$

2. We identify $f(x, y) = x + y^2$. Then, for h = 0.1,

$$y_{n+1} = y_n + 0.1(x_n + y_n^2) = 0.1x_n + y_n + 0.1y_n^2,$$

 and

$$y(0.1) \approx y_1 = 0.1(0) + 0 + 0.1(0)^2 = 0$$

 $y(0.2) \approx y_2 = 0.1(0.1) + 0 + 0.1(0)^2 = 0.01.$

For h = 0.05,

$$y_{n+1} = y_n + 0.05(x_n + y_n^2) = 0.05x_n + y_n + 0.05y_n^2$$

and

$$y(0.05) \approx y_1 = 0.05(0) + 0 + 0.05(0)^2 = 0$$

$$y(0.1) \approx y_2 = 0.05(0.05) + 0 + 0.05(0)^2 = 0.0025$$

$$y(0.15) \approx y_3 = 0.05(0.1) + 0.0025 + 0.05(0.0025)^2 = 0.0075$$

$$y(0.2) \approx y_4 = 0.05(0.15) + 0.0075 + 0.05(0.0075)^2 = 0.0150.$$

74

3. Separating variables and integrating, we have

$$\frac{dy}{y} = dx$$
 and $\ln|y| = x + c$.

Thus $y = c_1 e^x$ and, using y(0) = 1, we find c = 1, so $y = e^x$ is the solution of the initial-value problem.

.≿=0.1

x _n	y n	Actual Value	Abs . Error	% Rel. Error	x_n
0.00	1.0000	1.0000	0.0000	0.00	0.
0.10	1.1000	1.1052	0.0052	0.47	0.
0.20	1.2100	1.2214	0.0114	0.93	0.
0.30	1.3310	1.3499	0.0189	1.40	0.
0.40	1.4641	1.4918	0.0277	1.86	0.
0.50	1.6105	1.6487	0.0382	2.32	0.
0.60	1.7716	1.8221	0.0506	2.77	0.
0.70	1.9487	2.0138	0.0650	3.23	0.
0.80	2.1436	2.2255	0.0820	3.68	0.
0.90	2.3579	2.4596	0.1017	4.13	0.
1.00	2.5937	2.7183	0.1245	4.58	0.
 · • · <u> </u>					1

$h{=}0.05$				
x _n	Уп	Actual Value	Abs . Error	% Rel . Error
0.00	1.0000	1.0000	0.0000	0.00
0.05	1.0500	1.0513	0.0013	0.12
0.10	1.1025	1.1052	0.0027	0.24
0.15	1.1576	1.1618	0.0042	0.36
0.20	1.2155	1.2214	0.0059	0.48
0.25	1.2763	1.2840	0.0077	0.60
0.30	1.3401	1.3499	0.0098	0.72
0.35	1.4071	1.4191	0.0120	0.84
0.40	1.4775	1.4918	0.0144	0.96
0.45	1.5513	1.5683	0.0170	1.08
0.50	1.6289	1.6487	0.0198	1.20
0.55	1.7103	1.7333	0.0229	1.32
0.60	ï.7959	1.8221	0.0263	1.44
0.65	1.8856	1.9155	0.0299	1.56
0.70	1.9799	2.0138	0.0338	1.68
0.75	2.0789	2.1170	0.0381	1.80
0.80	2.1829	2.2255	0.0427	1.92
0.85	2.2920	2.3396	0.0476	2.04
0.90	2.4066	2.4596	0.0530	2.15
0.95	2.5270	2.5857	0.0588	2.27
1.00	2.6533	2.7183	0.0650	2.39

 \div . Separating variables and integrating, we have

$$\frac{dy}{y} = 2x \, dx \quad \text{and} \quad \ln|y| = x^2 + c.$$

Thus $y = c_1 e^{x^2}$ and, using y(1) = 1, we find $c = e^{-1}$, so $y = e^{x^2 - 1}$ is the solution of the initial-value problem.

h	e=0.1				
	x _n	y n	Actual Value	Abs . Error	% Rel. Error
-	1.00	1.0000	1.0000	0.0000	0.00
	1.10	1.2000	1.2337	0.0337	2.73
	1.20	1.4640	1.5527	0.0887	5.71
	1.30	1.8154	1.9937	0.1784	8.95
	1.40	2.2874	2.6117	0.3243	12.42
	1.50	2.9278	3.4903	0.5625	16.12

h=0.05				
\boldsymbol{x}_n	Уп	Actual Value	Abs . Error	% Rel. Error
1.00	1.0000	1.0000	0.0000	0.00
1.05	1.1000	1.1079	0.0079	0.72
1.10	1.2155	1.2337	0.0182	1.47
1.15	1.3492	1.3806	0.0314	2.27
1.20	1.5044	1.5527	0.0483	3.11
1.25	1.6849	1.7551	0.0702	4.00
1.30	1.8955	1.9937	0.0982	4.93
1.35	2.1419	2.2762	0.1343	5.90
1.40	2.4311	2.6117	0.1806	6.92
1.45	2.7714	3.0117	0.2403	7.98
1.50	3.1733	3.4903	0.3171	9.08

5.	h = 0.1		h = 0.0
	x _n	y _n	x_n
	0.00	0.0000	0.0
	0.10	0.1000	0.0
	0.20	0.1905	0.1
	0.30	0.2731	0.1
	0.40	0.3492	0.2
	0.50	0.4198	0.2
	I	J	0.3
			0.3
			0.4
			0.4

h = 0.05	
x _n	Уn
0.00	0.0000
0.05	0.0500
0.10	0.0976
0.15	0.1429
0.20	0.1863
0.25	0.2278
0.30	0.2676
0.35	0.3058
0.40	0.3427
0.45	0.3782
0.50	0.4124

x_n	У n	x_n	Уn
0.00	1.0000	0.00	1.0000
0.10	1.1000	0.05	1.0500
0.20	1.2220	0.10	1.1053
0.30	1.3753	0.15	1.1668
0.40	1.5735	0.20	1.2360
0.50	1.8371	0.25	1.3144
L		0.30	1.4039
		0.35	1.5070
		0.40	1.6267
		0.45	1.7670
		0.50	1.9332

7. *h*=0.1

x_n	y n
0.00	0.5000
0.10	0.5250
0.20	0.5431
0.30	0.5548
0.40	0.5613
0.50	0.5639
·	

h=0.05	
x _n	y _n
0.00	0.5000
0.05	0.5125
0.10	0.5232
0.15	0.5322
0.20	0.5395
0.25	0.5452
0.30	0.5496
0.35	0.5527
0.40	0.5547
0.45	0.5559
0.50	0.5565

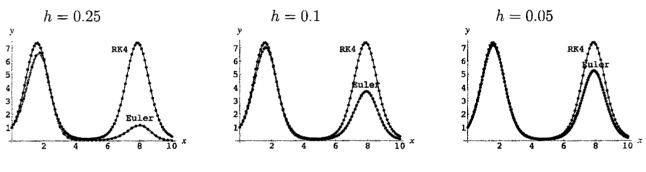
8. *h*=0.1

n=0.1		$h{=}0.05$	
x _n	Уп	x _n	y n
0.00	1.0000	0.00	1.0000
0.10	1.1000	0.05	1.0500
0.20	1.2159	0.10	1.1039
0.30	1.3505	0.15	1.1619
0.40	1.5072	0.20	1.2245
0.50	1.6902	0.25	1.2921
		0.30	1.3651
		0.35	1.4440
		0.40	1.5293
		0.45	1.6217
		0.50	1.7219

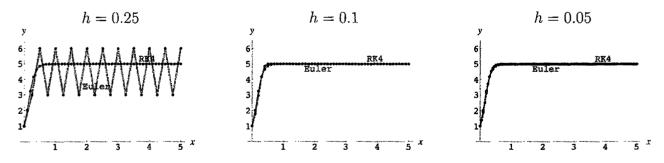
76

9.	h=0.1		h = 0.05		10.	h = 0.1		h = 0.05	
	xn	У n	x _n	y n		x_n	y n	x_n	y n
	1.00	1.0000	1.00	1.0000		0.00	0.5000	0.00	0.5000
	1.10	1.0000	1.05	1.0000		0.10	0.5250	0.05	0.5125
	1.20	1.0191	1.10	1.0049		0.20	0.5499	0.10	0.5250
	1.30	1.0588	1.15	1.0147		0.30	0.5747	0.15	0.5375
	1.40	1.1231	1.20	1.0298		0.40	0.5991	0.20	0.5499
	1.50	1.2194	1.25	1.0506		0.50	0.6231	0.25	0.5623
		I	1.30	1.0775		L		0.30	0.5746
			1.35	1.1115				0.35	0.5868
			1.40	1.1538				0.40	0.5989
			1.45	1.2057				0.45	0.6109
			1.50	1.2696				0.50	0.6228

11. Tables of values were computed using the Euler and RK4 methods. The resulting points were plotted and joined using **ListPlot** in *Mathematica*. A somewhat simplified version of the code used to in this is given in the *Student Resource and Solutions Manual (SRSM)* under **Use of Computers** in Section 2.6.



12. See the comments in Problem 11 above.

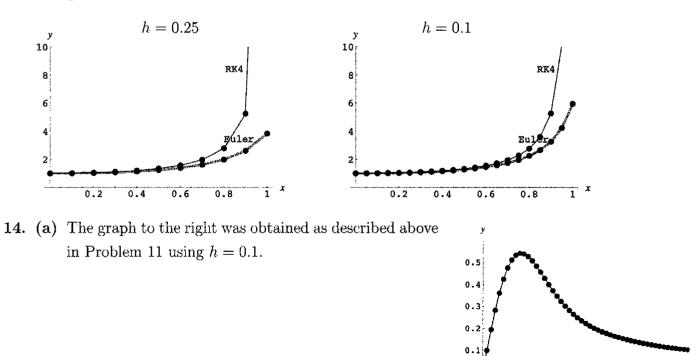


13. Tables of values, shown below, were first computed using Euler's method with h = 0.1 and h = 0.11and then using the RK4 method with the same values of h. Using separation of variables we find that the solution of the differential equation is $y = 1/(1 - x^2)$, which is undefined at x = 1, where the graph has a vertical asymptote. Because the actual solution of the differential equation becomes unbounded at x approaches 1, very small changes in the inputs x will result in large changes in the corresponding outputs y. This can be expected to have a serious effect on numerical procedures.

h = 0.1 (F	Euler)	$h{=}0.05$ ((Euler)	h=0.1 (RK4)	h = 0.05 ((RK4)
Xn	Уn	Xn	y n	x _n	y n	x _n	Уп
0.00	1.0000	0.00	1.0000	0.00	1.0000	0.00	1.0000
0.10	1.0000	0.05	1.0000	0.10	1.0101	0.05	1.0025
0.20	1.0200	0.10	1.0050	0.20	1.0417	0.10	1.0101
0.30	1.0616	0.15	1.0151	0.30	1.0989	0.15	1.0230
0.40	1.1292	0.20	1.0306	0.40	1.1905	0.20	1.0417
0.50	1.2313	0.25	1.0518	0.50	1.3333	0.25	1.0667
0.60	1.3829	0.30	1.0795	0.60	1.5625	0.30	1.0989
0.70	1.6123	0.35	1.1144	0.70	1.9607	0.35	1.1396
0.80	1.9763	0.40	1.1579	0.80	2.7771	0.40	1.1905
0.90	2.6012	0.45	1.2115	0.90	5.2388	0.45	1.2539
1.00	3.8191	0.50	1.2776	1.00	42.9931	0.50	1.3333
	·····	0.55	1.3592	<u> </u>	I	0.55	1.4337
		0.60	1.4608			0.60	1.5625
		0.65	1.5888			0.65	1.7316
		0.70	1.7529			0.70	1.9608
		0.75	1.9679			0.75	2.2857
		0.80	2.2584			0.80	2.7777
		0.85	2.6664			0.85	3.6034
		0.90	3.2708			0.90	5.2609
		0.95	4.2336			0.95	10.1973
		1.00	5.9363			1.00	84.0132

Exercises 2.6 A Numerical Method

The graphs below were obtained as described above in Problem 11.



78 http://profesoresparticulareslima.blogspot.pe/

Ę

4

1

2

3

Chapter 2 in Review

(b) Writing the differential equation in the form y' + 2xy = 1 we see that an integrating factor is $e^{\int 2x dx} = e^{x^2}$, so

$$\frac{d}{dx}[e^{x^2}y] = e^{x^2}$$

and

$$y = e^{-x^2} \int_0^x e^{t^2} dt + c e^{-x^2}.$$

This solution can also be expressed in terms of the inverse error function as

$$y = \frac{\sqrt{\pi}}{2} e^{-x^2} \operatorname{erfi}(x) + c e^{-x^2}$$

Letting x = 0 and y(0) = 0 we find c = 0, so the solution of the initial-value problem is

$$y = e^{-x^2} \int_0^x e^{t^2} dt = \frac{\sqrt{\pi}}{2} e^{-x^2} \operatorname{erfi}(x).$$

(c) Using either FindRoot in Mathematica or fsolve in Maple we see that y'(x) = 0 when x = 0.924139. Since y(0.924139) = 0.541044, we see from the graph in part (a) that (0.924139, 0.541044) is a relative maximum. Now, using the substitution u = -t in the integral below, we have

$$y(-x) = e^{-(-x)^2} \int_0^{-x} e^{t^2} dt = e^{-x^2} \int_0^x e^{(-u)^2} (-du) = -e^{-x^2} \int_0^x e^{u^2} du = -y(x).$$

Thus, y(x) is an odd function and (-0.924139, -0.541044) is a relative minimum.

Chapter 2 in Review

- 1. Writing the differential equation in the form y' = k(y + A/k) we see that the critical point -A/k is a repeller for k > 0 and an attractor for k < 0.
- 2. Separating variables and integrating we have

$$\frac{dy}{y} = \frac{4}{x} dx$$
$$\ln y = 4 \ln x + c = \ln x^4 + c$$
$$y = c_1 x^4.$$

We see that when x = 0, y = 0, so the initial-value problem has an infinite number of solutions for $\dot{y} = 0$ and no solutions for $k \neq 0$.

1. True; $y = k_2/k_1$ is always a solution for $k_1 \neq 0$.

79

Chapter 2 in Review

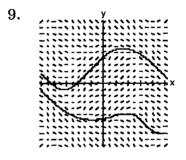
4. True; writing the differential equation as $a_1(x) dy + a_2(x)y dx = 0$ and separating variables yield-

$$\frac{dy}{y} = -\frac{a_2(x)}{a_1(x)} \, dx$$

- 5. $\frac{dy}{dx} = (y-1)^2(y-3)^2$
- 6. $\frac{dy}{dx} = y(y-2)^2(y-4)$
- 7. When n is odd, $x^n < 0$ for x < 0 and $x^n > 0$ for x > 0. In this case 0 is unstable. When n is even $x^n > 0$ for x < 0 and for x > 0. In this case 0 is semi-stable.

When n is odd, $-x^n > 0$ for x < 0 and $-x^n < 0$ for x > 0. In this case 0 is asymptotically stable When n is even, $-x^n < 0$ for x < 0 and for x > 0. In this case 0 is semi-stable.

8. Using a CAS we find that the zero of f occurs at approximately P = 1.3214. From the grave we observe that dP/dt > 0 for P < 1.3214 and dP/dt < 0 for P > 1.3214, so P = 1.3214 is \approx asymptotically stable critical point. Thus, $\lim_{t\to\infty} P(t) = 1.3214.$



10.	(a) linear	$x ext{ in } y, ext{ hom }$	ogeneous, ex	act	(b) linear i	n x
			_	_	<i>•</i> - • _	

- (c) separable, exact, linear in x and y
- (e) separable
- (g) linear in x
- (i) Bernoulli
- (k) linear in x and y, exact, separable, homogeneous
- (1) exact, linear in y(m) homogeneous
- (n) separable
- 11. Separating variables and using the identity $\cos^2 x = \frac{1}{2}(1 + \cos 2x)$, we have

$$\cos^2 x \, dx = \frac{y}{y^2 + 1} \, dy,$$
$$\frac{1}{2}x + \frac{1}{4}\sin 2x = \frac{1}{2}\ln\left(y^2 + 1\right) + c,$$

80

and

- (d) Bernoulli in x
- (f) separable, linear in x, Bernoulli
- (h) homogeneous
- (j) homogeneous, exact, Bernoulli

$$2x + \sin 2x = 2\ln(y^2 + 1) + c.$$

12. Write the differential equation in the form

$$y\ln\frac{x}{y}\,dx = \left(x\ln\frac{x}{y} - y\right)dy.$$

This is a homogeneous equation, so let x = uy. Then dx = u dy + y du and the differential equation becomes

$$y \ln u(u \, dy + y \, du) = (uy \ln u - y) \, dy$$
 or $y \ln u \, du = -dy$.

Separating variables, we obtain

$$\ln u \, du = -\frac{dy}{y}$$
$$u \ln |u| - u = -\ln |y| + c$$
$$\frac{x}{y} \ln \left|\frac{x}{y}\right| - \frac{x}{y} = -\ln |y| + c$$
$$x(\ln x - \ln y) - x = -y \ln |y| + cy.$$

13. The differential equation

$$\frac{dy}{dx} \div \frac{2}{6x+1}y = -\frac{3x^2}{6x+1}y^{-2}$$

is Bernoulli. Using $w = y^3$, we obtain the linear equation

$$\frac{dw}{dx} + \frac{6}{6x+1}w = -\frac{9x^2}{6x+1}\,.$$

An integrating factor is 6x + 1, so

$$\frac{d}{dx}\left[(6x+1)w\right] = -9x^2,\\w = -\frac{3x^3}{6x+1} + \frac{c}{6x+1},$$

and

$$(6x+1)y^3 = -3x^3 + c.$$

Note: The differential equation is also exact.)

14. Write the differential equation in the form $(3y^2 + 2x)dx + (4y^2 + 6xy)dy = 0$. Letting $M = 3y^2 + 2x$ and $N = 4y^2 + 6xy$ we see that $M_y = 6y = N_x$, so the differential equation is exact. From $f_x = 3y^2 + 2x$ we obtain $f = 3xy^2 + x^2 + h(y)$. Then $f_y = 6xy + h'(y) = 4y^2 + 6xy$ and $h'(y) = 4y^2$ so $h(y) = \frac{4}{3}y^3$. A one-parameter family of solutions is

$$3xy^2 + x^2 + \frac{4}{3}y^3 = c.$$

Chapter 2 in Review

and

15. Write the equation in the form

$$\frac{dQ}{dt} + \frac{1}{t}Q = t^3 \ln t.$$

An integrating factor is $e^{\ln t} = t$, so

$$\frac{d}{dt}[tQ] = t^4 \ln t$$
$$tQ = -\frac{1}{25}t^5 + \frac{1}{5}t^5 \ln t + c$$
$$Q = -\frac{1}{25}t^4 + \frac{1}{5}t^4 \ln t + \frac{c}{t}.$$

16. Letting u = 2x + y + 1 we have

$$\frac{du}{dx} = 2 + \frac{dy}{dx},$$

and so the given differential equation is transformed into

$$u\left(\frac{du}{dx}-2\right) = 1$$
 or $\frac{du}{dx} = \frac{2u+1}{u}$

Separating variables and integrating we get

$$\frac{u}{2u+1} du = dx$$

$$\left(\frac{1}{2} - \frac{1}{2} \frac{1}{2u+1}\right) du = dx$$

$$\frac{1}{2}u - \frac{1}{4} \ln|2u+1| = x + c$$

$$2u - \ln|2u+1| = 2x + c_1.$$

Resubstituting for u gives the solution

 $4x + 2y + 2 - \ln|4x + 2y + 3| = 2x + c_1$

or

$$|2x + 2y + 2 - \ln|4x + 2y + 3| = c_1.$$

8x

2x

17. Write the equation in the form

$$\frac{dy}{dx} \div \frac{8x}{x^2 + 4}y = \frac{2x}{x^2 + 4}.$$

An integrating factor is $(x^2 + 4)^4$, so
 $\frac{d}{dx}\left[(x^2 + 4)^4y\right] = 2x(x^2 + 4)^3$

82

 $(x^{2}+4)^{4} y = \frac{1}{4} (x^{2}+4)^{4} + c$ $y = \frac{1}{4} + c (x^{2}+4)^{-4}.$

Letting $M = 2r^2 \cos\theta \sin\theta + r \cos\theta$ and $N = 4r + \sin\theta - 2r \cos^2\theta$ we see that $M_r = 4r \cos\theta \sin\theta + r \cos\theta = N_{\theta}$, so the differential equation is exact. From $f_{\theta} = 2r^2 \cos\theta \sin\theta + r \cos\theta$ we obtain $f = -r^2 \cos^2\theta + r \sin\theta + h(r)$. Then $f_r = -2r \cos^2\theta + \sin\theta + h'(r) = 4r + \sin\theta - 2r \cos^2\theta$ and h'(r) = 4r so $h(r) = 2r^2$. The solution is

$$-r^2\cos^2\theta + r\sin\theta + 2r^2 = c.$$

- 13. The differential equation has the form $(d/dx) [(\sin x)y] = 0$. Integrating, we have $(\sin x)y = c$ or $y = c/\sin x$. The initial condition implies $c = -2\sin(7\pi/6) = 1$. Thus, $y = 1/\sin x$, where the interval $\pi < x < 2\pi$ is chosen to include $x = 7\pi/6$.
- 21. Separating variables and integrating we have

$$\begin{aligned} \frac{dy}{y^2} &= -2(t+1) \, dt \\ -\frac{1}{y} &= -(t+1)^2 + c \\ y &= \frac{1}{(t+1)^2 + c_1} \,, \qquad \text{where } -c = c_1 \end{aligned}$$

The initial condition $y(0) = -\frac{1}{8}$ implies $c_1 = -9$, so a solution of the initial-value problem is

$$y = \frac{1}{(t+1)^2 - 9}$$
 or $y = \frac{1}{t^2 + 2t - 8}$,

where -4 < t < 2.

- **11** (a) For y < 0, \sqrt{y} is not a real number.
 - (b) Scparating variables and integrating we have

$$\frac{dy}{\sqrt{y}} = dx$$
 and $2\sqrt{y} = x + c.$

Letting $y(x_0) = y_0$ we get $c = 2\sqrt{y_0} - x_0$, so that

$$2\sqrt{y} = x + 2\sqrt{y_0} - x_0$$
 and $y = \frac{1}{4}(x + 2\sqrt{y_0} - x_0)^2$.

Since $\sqrt{y} > 0$ for $y \neq 0$, we see that $dy/dx = \frac{1}{2}(x + 2\sqrt{y_0} - x_0)$ must be positive. Thus, the interval on which the solution is defined is $(x_0 - 2\sqrt{y_0}, \infty)$.

http://profesoresparticulareslima.blogspot.pe/

and

Chapter 2 in Review

22. (a) The differential equation is homogeneous and we let y = ux. Then

$$(x^2 - y^2) dx + xy dy = 0$$

$$(x^2 - u^2 x^2) dx + ux^2 (u dx + x du) = 0$$

$$dx + ux du = 0$$

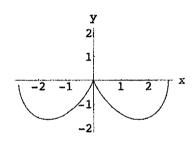
$$u du = -\frac{dx}{x}$$

$$\frac{1}{2}u^2 = -\ln|x| + c$$

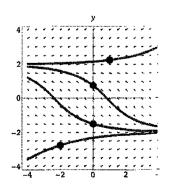
$$\frac{y^2}{x^2} = -2\ln|x| + c_1.$$

The initial condition gives $c_1 = 2$, so an implicit solution is $y^2 = x^2(2 - 2\ln|x|)$.

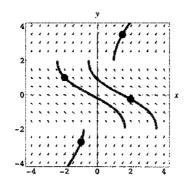
(b) Solving for y in part (a) and being sure that the initial condition is still satisfied, we have y = -√2 |x|(1 - ln |x|)^{1/2}, where -e ≤ x ≤ e so that 1 - ln |x| ≥ 0. The graph of this function indicates that the derivative is not defined at x = 0 and x = e. Thus, the solution of the initial-value problem is y = -√2 x(1 - ln x)^{1/2}, for 0 < x < e.</p>



- 23. The graph of $y_1(x)$ is the portion of the closed black curve lying in the fourth quadrant. Its interval of definition is approximately (0.7, 4.3). The graph of $y_2(x)$ is the portion of the left-hand black curve lying in the third quadrant. Its interval of definition is $(-\infty, 0)$.
- **24.** The first step of Euler's method gives $y(1.1) \approx 9 + 0.1(1+3) = 9.4$. Applying Euler's method $\therefore \in$ more time gives $y(1.2) \approx 9.4 + 0.1(1 + 1.1\sqrt{9.4}) \approx 9.8373$.
- 25. Since the differential equation is autonomous, all lineal elements on a given horizontal line have the same slope. The direction field is then as shown in the figure at the right. It appears from the figure that the differential equation has critical points at -2 (an attractor) and at 2 (a repeller). Thus, -2 is an aymptotically stable critical point and 2 is an unstable critical point.



26. Since the differential equation is autonomous, all lineal elements on a given horizontal line have the same slope. The direction field is then as shown in the figure at the right. It appears from the figure that the differential equation has no critical points.



3 Modeling with First-Order Differential Equations

Exercises 3.1

Linear Models

1. Let P = P(t) be the population at time t, and P_0 the initial population. From dP/dt = kF obtain $P = P_0 e^{kt}$. Using $P(5) = 2P_0$ we find $k = \frac{1}{5} \ln 2$ and $P = P_0 e^{(\ln 2)t/5}$. Setting P(t) = we have $3 = e^{(\ln 2)t/5}$, so

$$\ln 3 = \frac{(\ln 2)t}{5}$$
 and $t = \frac{5\ln 3}{\ln 2} \approx 7.9$ years

Setting $P(t) = 4P_0$ we have $4 = e^{(\ln 2)t/5}$, so

$$\ln 4 = \frac{(\ln 2)t}{5}$$
 and $t \approx 10$ years.

2. From Problem 1 the growth constant is $k = \frac{1}{5} \ln 2$. Then $P = P_0 e^{(1/5)(\ln 2)t}$ and $10,000 = P_0 e^{(3/5)}$ Solving for P_0 we get $P_0 = 10,000 e^{-(3/5) \ln 2} = 6,597.5$. Now

$$P(10) = P_0 e^{(1/5)(\ln 2)(10)} = 6,597.5e^{2\ln 2} = 4P_0 = 26,390.$$

The rate at which the population is growing is

$$P'(10) = kP(10) = \frac{1}{5}(\ln 2)26,390 = 3658 \text{ persons/year.}$$

3. Let P = P(t) be the population at time t. Then dP/dt = kP and $P = ce^{kt}$. From P(0) = c = we see that $P = 500e^{kt}$. Since 15% of 500 is 75, we have $P(10) = 500e^{10k} = 575$. Solving for k get $k = \frac{1}{10} \ln \frac{575}{500} = \frac{1}{10} \ln 1.15$. When t = 30,

$$P(30) = 500e^{(1/10)(\ln 1.15)30} = 500e^{3\ln 1.15} = 760$$
 years

and

$$P'(30) = kP(30) = \frac{1}{10}(\ln 1.15)760 = 10.62 \text{ persons/year}$$

4. Let P = P(t) be bacteria population at time t and P_0 the initial number. From $dP/dt = k\bar{r}$ obtain $P = P_0 e^{kt}$. Using P(3) = 400 and P(10) = 2000 we find $400 = P_0 e^{3k}$ or $e^k = (400/P_0)^{10}$ From P(10) = 2000 we then have $2000 = P_0 e^{10k} = P_0 (400/P_0)^{10/3}$, so

$$rac{2000}{400^{10/3}} = P_0^{-7/3}$$
 and $P_0 = \left(rac{2000}{400^{10/3}}
ight)^{-3/7} pprox 201.$

86

5. Let A = A(t) be the amount of lead present at time t. From dA/dt = kA and A(0) = 1 we obtain $A = e^{kt}$. Using A(3.3) = 1/2 we find $k = \frac{1}{3.3} \ln(1/2)$. When 90% of the lead has decayed, 0.1 grams will remain. Setting A(t) = 0.1 we have $e^{t(1/3.3) \ln(1/2)} = 0.1$, so

$$\frac{t}{3.3}\ln\frac{1}{2} = \ln 0.1$$
 and $t = \frac{3.3\ln 0.1}{\ln(1/2)} \approx 10.96$ hours.

- : Let A = A(t) be the amount present at time t. From dA/dt = kA and A(0) = 100 we obtain $A = 100e^{kt}$. Using A(6) = 97 we find $k = \frac{1}{6} \ln 0.97$. Then $A(24) = 100e^{(1/6)(\ln 0.97)24} = 100(0.97)^4 \approx 15.5$ mg.
- Setting A(t) = 50 in Problem 6 we obtain $50 = 100e^{kt}$, so

$$kt = \ln \frac{1}{2}$$
 and $t = \frac{\ln(1/2)}{(1/6)\ln 0.97} \approx 136.5$ hours.

- a) The solution of dA/dt = kA is $A(t) = A_0 e^{kt}$. Letting $A = \frac{1}{2}A_0$ and solving for t we obtain the half-life $T = -(\ln 2)/k$.
 - b) Since $k = -(\ln 2)/T$ we have

$$A(t) = A_0 e^{-(\ln 2)t/T} = A_0 2^{-t/T}.$$

- c) Writing $\frac{1}{8}A_0 = A_0 2^{-t/T}$ as $2^{-3} = 2^{-t/T}$ and solving for t we get t = 3T. Thus, an initial amount A_0 will decay to $\frac{1}{8}A_0$ in three half-lives.
- : Let I = I(t) be the intensity, t the thickness, and $I(0) = I_0$. If dI/dt = kI and $I(3) = 0.25I_0$, then $I = I_0 e^{kt}$, $k = \frac{1}{3} \ln 0.25$, and $I(15) = 0.00098I_0$.
 - From dS/dt = rS we obtain $S = S_0 e^{rt}$ where $S(0) = S_0$.
 - a) If $S_0 = 5000 and r = 5.75% then S(5) = \$6665.45.
 - 5) If S(t) = 10,000 then t = 12 years.
 - $z \in S \approx \$6651.82$
- From Example 3 in the text, the amount of carbon present at time t is $A(t) = A_0 e^{-0.00012378t}$. Letting t = 660 and solving for A_0 we have $A(660) = A_0 e^{-0.0001237(660)} = 0.921553A_0$. Thus, approximately 92% of the original amount of C-14 remained in the cloth as of 1988.
 - Example that dT/dt = k(T-10) so that $T = 10 + ce^{kt}$. If $T(0) = 70^{\circ}$ and $T(1/2) = 50^{\circ}$ then c = 60. If $k = 2\ln(2/3)$ so that $T(1) = 36.67^{\circ}$. If $T(t) = 15^{\circ}$ then t = 3.06 minutes.
- setupe that dT/dt = k(T-5) so that $T = 5 + ce^{kt}$. If $T(1) = 55^{\circ}$ and $T(5) = 30^{\circ}$ then $k = -\frac{1}{4} \ln 2$ is c = 59.4611 so that $T(0) = 64.4611^{\circ}$.

- 15. We use the fact that the boiling temperature for water is 100° C. Now assume that dT/dt = k(T 100) so that $T = 100 + ce^{kt}$. If $T(0) = 20^{\circ}$ and $T(1) = 22^{\circ}$, then c = -80 and $k = \ln(39/40) \approx -0.0253$. Then $T(t) = 100 80e^{-0.0253t}$, and when T = 90, t = 82.1 seconds. If $T(t) = 98^{\circ}$ then t = 145.7 seconds.
- 16. The differential equation for the first container is $dT_1/dt = k_1(T_1 0) = k_1T_1$, whose solution is $T_1(t) = c_1 e^{k_1 t}$. Since $T_1(0) = 100$ (the initial temperature of the metal bar), we have $100 = c_1$ as $T_1(t) = 100e^{k_1 t}$. After 1 minute, $T_1(1) = 100e^{k_1} = 90^{\circ}$ C, so $k_1 = \ln 0.9$ and $T_1(t) = 100e^{t \ln 0.5}$. After 2 minutes, $T_1(2) = 100e^{2\ln 0.9} = 100(0.9)^2 = 81^{\circ}$ C.

The differential equation for the second container is $dT_2/dt = k_2(T_2 - 100)$, whose solution :- $T_2(t) = 100 + c_2 e^{k_2 t}$. When the metal bar is immersed in the second container, its initial temperature is $T_2(0) = 81$, so

$$T_2(0) = 100 + c_2 e^{k_2(0)} = 100 + c_2 = 81$$

and $c_2 = -19$. Thus, $T_2(t) = 100 - 19e^{k_2 t}$. After 1 minute in the second tank, the temperature the metal bar is 91°C, so

$$T_2(1) = 100 - 19e^{k_2} = 91$$
$$e^{k_2} = \frac{9}{19}$$
$$k_2 = \ln \frac{9}{19}$$

and $T_2(t) = 100 - 19e^{t \ln(9/19)}$. Setting $T_2(t) = 99.9$ we have

$$100 - 19e^{t\ln(9/19)} = 99.9$$
$$e^{t\ln(9/19)} = \frac{0.1}{19}$$
$$t = \frac{\ln(0.1/19)}{\ln(9/19)} \approx 7.02.$$

Thus, from the start of the "double dipping" process, the total time until the bar reaches 99.9° in the second container is approximately 9.02 minutes.

17. Using separation of variables to solve $dT/dt = k(T - T_m)$ we get $T(t) = T_m + ce^{kt}$. Using T(0) = we find $c = 70 - T_m$, so $T(t) = T_m + (70 - T_m)e^{kt}$. Using the given observations, we obtain

$$T\left(\frac{1}{2}\right) = T_m + (70 - T_m)e^{k/2} = 110$$
$$T(1) = T_m + (70 - T_m)e^k = 145.$$

Then, from the first equation, $e^{k/2} = (110 - T_m)/(70 - T_m)$ and

$$e^{k} = (e^{k/2})^{2} = \left(\frac{110 - T_{m}}{70 - T_{m}}\right)^{2} = \frac{145 - T_{m}}{70 - T_{m}}$$
$$\frac{(110 - T_{m})^{2}}{70 - T_{m}} = 145 - T_{m}$$
$$12100 - 220T_{m} + T_{m}^{2} = 10150 - 215T_{m} + T_{m}^{2}$$
$$T_{m} = 390.$$

The temperature in the oven is 390°.

- 15. (a) The initial temperature of the bath is $T_m(0) = 60^\circ$, so in the short term the temperature of the chemical, which starts at 80°, should decrease or cool. Over time, the temperature of the bath will increase toward 100° since $e^{-0.1t}$ decreases from 1 toward 0 as t increases from 0. Thus, in the long term, the temperature of the chemical should increase or warm toward 100°.
 - (b) Adapting the model for Newton's law of cooling, we have

$$\frac{dT}{dt} = -0.1(T - 100 + 40e^{-0.1t}), \quad T(0) = 80$$

Writing the differential equation in the form

$$\frac{dT}{dt} + 0.1T = 10 - 4e^{-0.1t}$$

we see that it is linear with integrating factor $e^{\int 0.1 dt} = e^{0.1t}$. Thus

$$\frac{d}{dt}[e^{0.1t}T] = 10e^{0.1t} - 4$$
$$e^{0.1t}T = 100e^{0.1t} - 4t + c$$

and

$$T(t) = 100 - 4te^{-0.1t} + ce^{-0.1t}$$

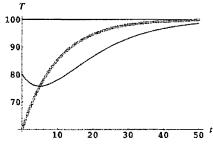
Now T(0) = 80 so 100 + c = 80, c = -20 and

$$T(t) = 100 - 4te^{-0.1t} - 20e^{-0.1t} = 100 - (4t + 20)e^{-0.1t}$$

The thinner curve verifies the prediction of cooling followed by warming toward 100°. The wider curve shows the temperature T_m of the liquid bath.

Exactly fying $T_m = 70$, the differential equation is dT/dt = k(T - 70). Assuming T(0) = 98.6 and $-\tau$ arating variables we find $T(t) = 70 + 28.9e^{kt}$. If $t_1 > 0$ is the time of discovery of the body, then

$$T(t_1) = 70 + 28.6e^{kt_1} = 85$$
 and $T(t_1 + 1) = 70 + 28.6e^{k(t_1 + 1)} = 80.6e^{k(t_1 + 1)}$



Therefore $e^{kt_1} = 15/28.6$ and $e^{k(t_1 - 1)} = 10/28.6$. This implies

$$e^k = \frac{10}{28.6} e^{-kt_1} = \frac{10}{28.6} \cdot \frac{28.6}{15} = \frac{2}{3},$$

so $k = \ln \frac{2}{3} \approx -0.405465108$. Therefore

$$t_1 = \frac{1}{k} \ln \frac{15}{28.6} \approx 1.5916 \approx 1.6$$

Death took place about 1.6 hours prior to the discovery of the body.

20. Solving the differential equation $dT/dt = kS(T - T_m)$ subject to $T(0) = T_0$ gives

$$T(t) = T_m + (T_0 - T_m)e^{kSt}.$$

The temperatures of the coffee in cups A and B are, respectively,

$$T_A(t) = 70 + 80e^{kSt}$$
 and $T_B(t) = 70 + 80e^{2kSt}$.

Then $T_A(30) = 70 + 80e^{30kS} = 100$, which implies $e^{30kS} = \frac{3}{8}$. Hence

$$T_B(30) = 70 + 80e^{60kS} = 70 + 80 \left(e^{30kS}\right)^2$$
$$= 70 + 80 \left(\frac{3}{8}\right)^2 = 70 + 80 \left(\frac{9}{64}\right) = 81.25^{\circ} \text{F}.$$

- **21.** From dA/dt = 4 A/50 we obtain $A = 200 + ce^{-t/50}$. If A(0) = 30 then c = -170 at $A = 200 170e^{-t/50}$.
- **22.** From dA/dt = 0 A/50 we obtain $A = ce^{-t/50}$. If A(0) = 30 then c = 30 and $A = 30e^{-t/50}$.
- **23.** From dA/dt = 10 A/100 we obtain $A = 1000 + ce^{-t/100}$. If A(0) = 0 then $c = -1000 + A(t) = 1000 1000e^{-t/100}$.
- 24. From Problem 23 the number of pounds of salt in the tank at time t is $A(t) = 1000 1000e^{-t/2}$. The concentration at time t is $c(t) = A(t)/500 = 2 - 2e^{-t/100}$. Therefore $c(5) = 2 - 2e^{-1/2} = 0.0975 \text{ lb/gal}$ and $\lim_{t\to\infty} c(t) = 2$. Solving $c(t) = 1 = 2 - 2e^{-t/100}$ for t we obtain t = 100 ln 1 = 69.3 min.
- 25. From

$$\frac{dA}{dt} = 10 - \frac{10A}{500 - (10 - 5)t} = 10 - \frac{2A}{100 - t}$$

we obtain $A = 1000 - 10t + c(100 - t)^2$. If A(0) = 0 then $c = -\frac{1}{10}$. The tank is empty in 1 minutes.

26. With $c_{in}(t) = 2 + \sin(t/4)$ lb/gal, the initial-value problem is

$$\frac{dA}{dt} + \frac{1}{100}A = 6 + 3\sin\frac{t}{4}, \quad A(0) = 50.$$

90

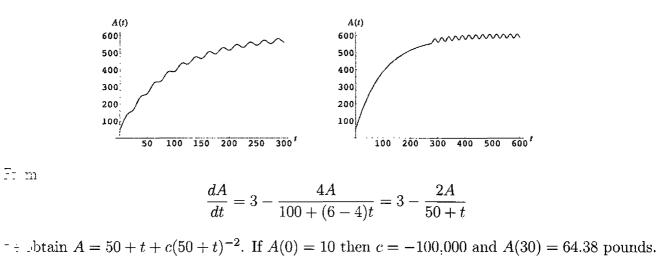
The differential equation is linear with integrating factor $e^{\int dt/100} = e^{t/100}$, so

$$\frac{d}{dt} [e^{t/100} A(t)] = \left(6 + 3\sin\frac{t}{4}\right) e^{t/100}$$
$$e^{t/100} A(t) = 600 e^{t/100} + \frac{150}{313} e^{t/100} \sin\frac{t}{4} - \frac{3750}{313} e^{t/100} \cos\frac{t}{4} + c,$$
$$A(t) = 600 + \frac{150}{313} \sin\frac{t}{4} - \frac{3750}{313} \cos\frac{t}{4} + c e^{-t/100}.$$

Letting t = 0 and A = 50 we have 600 - 3750/313 + c = 50 and c = -168400/313. Then

$$A(t) = 600 + \frac{150}{313}\sin\frac{t}{4} - \frac{3750}{313}\cos\frac{t}{4} - \frac{168400}{313}e^{-t/100}.$$

The graphs on [0, 300] and [0, 600] below show the effect of the sine function in the input when inpared with the graph in Figure 3.1.4(a) in the text.



_

- Initially the tank contains 300 gallons of solution. Since brine is pumped in at a rate of 3 gal/min and the mixture is pumped out at a rate of 2 gal/min, the net change is an increase of 1 gal/min. Thus, in 100 minutes the tank will contain its capacity of 400 gallons.
 - to The differential equation describing the amount of salt in the tank is A'(t) = 6 2A/(300 + t) with solution

$$A(t) = 600 + 2t - (4.95 \times 10^7)(300 + t)^{-2}, \qquad 0 \le t \le 100,$$

as noted in the discussion following Example 5 in the text. Thus, the amount of salt in the tank when it overflows is

$$A(100) = 800 - (4.95 \times 10^7)(400)^{-2} = 490.625$$
 lbs.

When the tank is overflowing the amount of salt in the tank is governed by the differential

91

equation

$$rac{dA}{dt} = (3 ext{ gal/min})(2 ext{ lb/gal}) - \left(rac{A}{400} ext{ lb/gal}
ight)(3 ext{ gal/min})$$

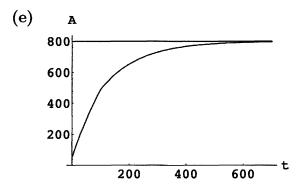
= $6 - rac{3A}{400}$, $A(100) = 490.625$.

Solving the equation, we obtain $A(t) = 800 + ce^{-3t/400}$. The initial condition yields c = -654.947, so that

$$A(t) = 800 - 654.947e^{-3t/400}$$

When t = 150, A(150) = 587.37 lbs.

(d) As $t \to \infty$, the amount of salt is 800 lbs, which is to be expected since (400 gal)(2 lb/gal) = 800 lbs.



- **29.** Assume L di/dt + Ri = E(t), L = 0.1, R = 50, and E(t) = 50 so that $i = \frac{3}{5} + ce^{-500t}$. If i(0) =then c = -3/5 and $\lim_{t\to\infty} i(t) = 3/5$.
- **30.** Assume L di/dt + Ri = E(t), $E(t) = E_0 \sin \omega t$, and $i(0) = i_0$ so that

$$i = \frac{E_0 R}{L^2 \omega^2 + R^2} \sin \omega t - \frac{E_0 L \omega}{L^2 \omega^2 + R^2} \cos \omega t + c e^{-Rt/L}.$$

Since $i(0) = i_0$ we obtain $c = i_0 + \frac{E_0 L \omega}{L^2 \omega^2 + R^2}$.

- **31.** Assume R dq/dt + (1/C)q = E(t), R = 200, $C = 10^{-4}$, and E(t) = 100 so that $q = 1/100 + ce^{-50}$. If q(0) = 0 then c = -1/100 and $i = \frac{1}{2}e^{-50t}$.
- **32.** Assume R dq/dt + (1/C)q = E(t), R = 1000, $C = 5 \times 10^{-6}$, and E(t) = 200. Then $q = \frac{1}{1000} + ce^{-20}$ and $i = -200ce^{-200t}$. If i(0) = 0.4 then $c = -\frac{1}{500}$, q(0.005) = 0.003 coulombs, and i(0.005) = 0.1472 amps. We have $q \to \frac{1}{1000}$ as $t \to \infty$.
- **33.** For $0 \le t \le 20$ the differential equation is 20 di/dt + 2i = 120. An integrating factor is $e^{t/10}$, $(d/dt)[e^{t/10}i] = 6e^{t/10}$ and $i = 60 + c_1e^{-t/10}$. If i(0) = 0 then $c_1 = -60$ and $i = 60 60e^{-t/10}$. For t > 20 the differential equation is 20 di/dt + 2i = 0 and $i = c_2e^{-t/10}$. At t = 20 we was

$$i(t) = \begin{cases} 60 - 60e^{-2} \text{ so that } c_2 = 60 (e^2 - 1). \text{ Thus} \\ i(t) = \begin{cases} 60 - 60e^{-t/10}, & 0 \le t \le 20 \\ 60 (e^2 - 1) e^{-t/10}, & t > 20. \end{cases}$$

14. Separating variables, we obtain

$$\frac{dq}{E_0 - q/C} = \frac{dt}{k_1 + k_2 t}$$
$$-C \ln \left| E_0 - \frac{q}{C} \right| = \frac{1}{k_2} \ln |k_1 + k_2 t| + c_1$$
$$\frac{(E_0 - q/C)^{-C}}{(k_1 + k_2 t)^{1/k_2}} = c_2.$$

Setting $q(0) = q_0$ we find $c_2 = (E_0 - q_0/C)^{-C}/k_1^{1/k_2}$, so $\frac{(E_0 - q/C)^{-C}}{(E_0 - q_0/C)^{-C}} = \frac{(E_0 - q_0/C)^{-C}}{(E_0 - q_0/C)^{-C}}$

$$\frac{|L_0 - q/C|^{-1}}{(k_1 + k_2 t)^{1/k_2}} = \frac{(L_0 - q_0/C)^{-1}}{k_1^{1/k_2}}$$

$$\left(E_0 - \frac{q}{C}\right)^{-C} = \left(E_0 - \frac{q_0}{C}\right)^{-C} \left(\frac{k_1}{k + k_2 t}\right)^{-1/k_2}$$
$$E_0 - \frac{q}{C} = \left(E_0 - \frac{q_0}{C}\right) \left(\frac{k_1}{k + k_2 t}\right)^{1/Ck_2}$$
$$q = E_0 C + (q_0 - E_0 C) \left(\frac{k_1}{k + k_2 t}\right)^{1/Ck_2}$$

15. (a) From m dv/dt = mg - kv we obtain $v = mg/k + ce^{-kt/m}$. If $v(0) = v_0$ then $c = v_0 - mg/k$ and the solution of the initial-value problem is

$$v(t) = \frac{mg}{k} + \left(v_0 - \frac{mg}{k}\right)e^{-kt/m}.$$

- b) As $t \to \infty$ the limiting velocity is mg/k.
- (c) From ds/dt = v and s(0) = 0 we obtain

$$s(t) = \frac{mg}{k}t - \frac{m}{k}\left(v_0 - \frac{mg}{k}\right)e^{-kt/m} + \frac{m}{k}\left(v_0 - \frac{mg}{k}\right).$$

- (a) Integrating $d^2s/dt^2 = -g$ we get v(t) = ds/dt = -gt + c. From v(0) = 300 we find c = 300, and we are given g = 32, so the velocity is v(t) = -32t + 300.
 - b) Integrating again and using s(0) = 0 we get $s(t) = -16t^2 + 300t$. The maximum height is attained when v = 0, that is, at $t_a = 9.375$. The maximum height will be s(9.375) = 1406.25 ft.

37. When air resistance is proportional to velocity, the model for the velocity is m dv/dt = -mg - kv (using the fact that the positive direction is upward.) Solving the differential equation using separation of variables we obtain $v(t) = -mg/k + ce^{-kt/m}$. From v(0) = 300 we get

$$v(t) = -\frac{mg}{k} + \left(300 + \frac{mg}{k}\right)e^{-kt/m}.$$

Integrating and using s(0) = 0 we find

$$s(t) = -\frac{mg}{k}t + \frac{m}{k}\left(300 + \frac{mg}{k}\right)(1 - e^{-kt/m}).$$

Setting k = 0.0025, m = 16/32 = 0.5, and g = 32 we have

$$s(t) = 1,340,000 - 6,400t - 1,340,000e^{-0.005t}$$

and

$$v(t) = -6,400 + 6,700e^{-0.005t}.$$

The maximum height is attained when v = 0, that is, at $t_a = 9.162$. The maximum height will s(9.162) = 1363.79 ft, which is less than the maximum height in Problem 36.

- **38.** Assuming that the air resistance is proportional to velocity and the positive direction is downwated with s(0) = 0, the model for the velocity is m dv/dt = mg - kv. Using separation of variable to solve this differential equation, we obtain $v(t) = mg/k + ce^{-kt/m}$. Then, using v(0) = 0. get $v(t) = (mg/k)(1 - e^{-kt/m})$. Letting k = 0.5, m = (125 + 35)/32 = 5, and g = 32, we have $v(t) = 320(1 - e^{-0.1t})$. Integrating, we find $s(t) = 320t + 3200e^{-0.1t} + c_1$. Solving $s(0) = 1000 e^{-0.1t}$ for c_1 we find $c_1 = -3200$, therefore $s(t) = 320t + 3200e^{-0.1t} - 3200$. At t = 15, when the parachute opens, v(15) = 248.598 and s(15) = 2314.02. At this time the value of k changes k = 10 and the new initial velocity is $v_0 = 248.598$. With the parachute open, the skydivvelocity is $v_p(t) = mg/k + c_2 e^{-kt/m}$, where t is reset to 0 when the parachute opens. Let t_{12} m = 5, g = 32, and k = 10, this gives $v_p(t) = 16 + c_2 e^{-2t}$. From v(0) = 248.598 we ... $c_2 = 232.598$, so $v_p(t) = 16 + 232.598e^{-2t}$. Integrating, we get $s_p(t) = 16t - 116.299e^{-2t} + c_3$. Solve, $s_p(0) = 0$ for c_3 , we find $c_3 = 116.299$, so $s_p(t) = 16t - 116.299e^{-2t} + 116.299$. Twenty seconds at leaving the plane is five seconds after the parachute opens. The skydiver's velocity at this tim $v_p(5) = 16.0106$ ft/s and she has fallen a total of $s(15) + s_p(5) = 2314.02 + 196.294 = 2510.31$ Her terminal velocity is $\lim_{t\to\infty} v_p(t) = 16$, so she has very nearly reached her terminal velocity five seconds after the parachute opens. When the parachute opens, the distance to the groun 15,000 - s(15) = 15,000 - 2,314 = 12,686 ft. Solving $s_{p}(t) = 12,686$ we get t = 785.6 s = 1 min. Thus, it will take her approximately 13.1 minutes to reach the ground after her parachute. opened and a total of (785.6 + 15)/60 = 13.34 minutes after she exits the plane.
- 39. (a) The differential equation is first-order and linear. Letting $b = k/\rho$, the integrating fact.

94

 $e^{\int 3b \, dt/(bt+r_0)} = (r_0 + bt)^3$. Then

$$\frac{d}{dt}[(r_0+bt)^3v] = g(r_0+bt)^3 \text{ and } (r_0+bt)^3v = \frac{g}{4b}(r_0+bt)^4 + c.$$

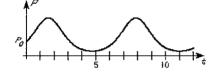
The solution of the differential equation is $v(t) = (g/4b)(r_0 + bt) + c(r_0 + bt)^{-3}$. Using v(0) = 0 we find $c = -gr_0^4/4b$, so that

$$v(t) = \frac{g}{4b}(r_0 + bt) - \frac{gr_0^4}{4b(r_0 + bt)^3} = \frac{g\rho}{4k}\left(r_0 + \frac{k}{\rho}t\right) - \frac{g\rho r_0^4}{4k(r_0 + kt/\rho)^3}.$$

- (b) Integrating $dr/dt = k/\rho$ we get $r = kt/\rho + c$. Using $r(0) = r_0$ we have $c = r_0$, so $r(t) = kt/\rho + r_0$.
- (c) If r = 0.007 ft when t = 10 s, then solving r(10) = 0.007 for k/ρ , we obtain $k/\rho = -0.0003$ and r(t) = 0.01 0.0003t. Solving r(t) = 0 we get t = 33.3, so the raindrop will have evaporated completely at 33.3 seconds.
- \pm J. Separating variables, we obtain $dP/P = k \cos t \, dt$, so

$$\ln |P| = k \sin t + c$$
 and $P = c_1 e^{k \sin t}$.

If $P(0) = P_0$, then $c_1 = P_0$ and $P = P_0 e^{k \sin t}$.



- -1. (a) From $dP/dt = (k_1 k_2)P$ we obtain $P = P_0 e^{(k_1 k_2)t}$ where $P_0 = P(0)$.
 - (b) If $k_1 > k_2$ then $P \to \infty$ as $t \to \infty$. If $k_1 = k_2$ then $P = P_0$ for every t. If $k_1 < k_2$ then $P \to 0$ as $t \to \infty$.
- \therefore (a) The solution of the differential equation is $P(t) = c_1 e^{kl} + h/k$. If we let the initial population of fish be P_0 then $P(0) = P_0$ which implies that

$$c_1 = P_0 - \frac{h}{k}$$
 and $P(t) = \left(P_0 - \frac{h}{k}\right)e^{kt} + \frac{h}{k}.$

(b) For $P_0 > h/k$ all terms in the solution are positive. In this case P(t) increases as time t increases. That is, $P(t) \to \infty$ as $t \to \infty$.

For $P_0 = h/k$ the population remains constant for all time t:

$$P(t) = \left(\frac{h}{k} - \frac{h}{k}\right)e^{kt} + \frac{h}{k} = \frac{h}{k}.$$

For $0 < P_0 < h/k$ the coefficient of the exponential function is negative and so the function decreases as time t increases.

c) Since the function decreases and is concave down, the graph of P(t) crosses the t-axis. That is, there exists a time T > 0 such that P(T) = 0. Solving

$$\left(P_0 - \frac{h}{k}\right)e^{kT} + \frac{h}{k} = 0$$

for T shows that the time of extinction is

$$T = \frac{1}{k} \ln \left(\frac{h}{h - kP_0} \right).$$

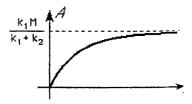
43. (a) Solving r - kx = 0 for x we find the equilibrium solution x = r/k. When x < r/k, dx/dt > 0 and when x > r/k, dx/dt < 0. From the phase portrait we see that $\lim_{t\to\infty} x(t) = r/k$.

(b) From dx/dt = r - kx and x(0) = 0 we obtain $x = r/k - (r/k)e^{-kt}$ so that $x \to r/k$ as $t \to \infty$. If x(T) = r/2k then $T = (\ln 2)/k$.

44. (a) Solving k₁(M - A) - k₂A = 0 for A we find the equilibrium solution A = k₁M/(k₁ + k₂). From the phase portrait we see that lim_{t→∞} A(t) = k₁M/(k₁ + k₂). Since k₂ > 0, the material will never be completely memorized and the larger k₂ is, the less the amount of material will be memorized over time.

(b) Write the differential equation in the form $dA/dt + (k_1+k_2)A = k_1M$. Then an integrating factor is $e^{(k_1+k_2)t}$, and

$$\frac{d}{dt} \left[e^{(k_1 + k_2)t} A \right] = k_1 M e^{(k_1 + k_2)t}$$
$$e^{(k_1 + k_2)t} A = \frac{k_1 M}{k_1 + k_2} e^{(k_1 + k_2)t} + c$$
$$A = \frac{k_1 M}{k_1 + k_2} + c e^{-(k_1 + k_2)t}$$



r/k

¥

Å

A

¥

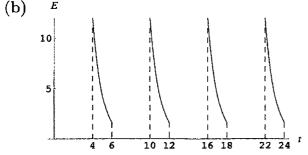
.

 $\frac{r}{k}$

Using
$$A(0) = 0$$
 we find $c = -\frac{k_1 M}{k_1 + k_2}$ and $A = \frac{k_1 M}{k_1 + k_2} \left(1 - e^{-(k_1 + k_2)t}\right)$. As $t \to \infty$,
 $A \to \frac{k_1 M}{k_1 + k_2}$.

45. (a) For $0 \le t < 4$, $6 \le t < 10$ and $12 \le t < 16$, no voltage is applied to the heart and E(t) = 0. At the other times, the differential equation is dE/dt = -E/RC. Separating variables, integrating, and solving for e, we get $E = ke^{-t/RC}$, subject to E(4) = E(10) = E(16) = 12. These initial conditions yield, respectively, $k = 12e^{4/RC}$, $k = 12e^{10/RC}$, $k = 12e^{16/RC}$, and $k = 12e^{22/RC}$. Thus

$$E(t) = \begin{cases} 0, & 0 \le t < 4, \ 6 \le t < 10, \ 12 \le t < 16\\ 12e^{(4-t)/RC}, & 4 \le t < 6\\ 12e^{(10-t)/RC}, & 10 \le t < 12\\ 12e^{(16-t)/RC}, & 16 \le t < 18\\ 12e^{(22-t)/RC}, & 22 \le t < 24. \end{cases}$$



+: (a) (i) Using Newton's second law of motion, F = ma = m dv/dt, the differential equation for the velocity v is

$$m \frac{dv}{dt} = mg\sin\theta$$
 or $\frac{dv}{dt} = g\sin\theta$,

where $mg\sin\theta$, $0 < \theta < \pi/2$, is the component of the weight along the plane in the direction of motion.

(*ii*) The model now becomes

$$m\frac{dv}{dt} = mg\sin\theta - \mu mg\cos\theta,$$

where $\mu mg \cos \theta$ is the component of the force of sliding friction (which acts perpendicular to the plane) along the plane. The negative sign indicates that this component of force is a retarding force which acts in the direction opposite to that of motion.

(iii) If air resistance is taken to be proportional to the instantaneous velocity of the body, the model becomes

$$m\frac{dv}{dt} = mg\sin\theta - \mu mg\cos\theta - kv,$$

where k is a constant of proportionality.

(b) (i) With m = 3 slugs, the differential equation is

$$3\frac{dv}{dt} = (96) \cdot \frac{1}{2} \qquad \text{or} \qquad \frac{dv}{dt} = 16.$$

Integrating the last equation gives $v(t) = 16t + c_1$. Since v(0) = 0, we have $c_1 = 0$ and s v(t) = 16t.

(ii) With m = 3 slugs, the differential equation is

$$3\frac{dv}{dt} = (96) \cdot \frac{1}{2} - \frac{\sqrt{3}}{4} \cdot (96) \cdot \frac{\sqrt{3}}{2} \qquad \text{or} \qquad \frac{dv}{dt} = 4.$$

In this case v(t) = 4t.

(*iii*) When the retarding force due to air resistance is taken into account, the differentiequation for velocity v becomes

$$3\frac{dv}{dt} = (96) \cdot \frac{1}{2} - \frac{\sqrt{3}}{4} \cdot (96) \cdot \frac{\sqrt{3}}{2} - \frac{1}{4}v \qquad \text{or} \qquad 3\frac{dv}{dt} = 12 - \frac{1}{4}v.$$

The last differential equation is linear and has solution $v(t) = 48 + c_1 e^{-t/12}$. Since v(0) = we find $c_1 = -48$, so $v(t) = 48 - 48e^{-t/12}$.

47. (a) (i) If s(t) is distance measured down the plane from the highest point, then ds/dt = v. Integrating ds/dt = 16t gives $s(t) = 8t^2 + c_2$. Using s(0) = 0 then gives $c_2 = 0$. Now the length L of the plane is $L = 50/\sin 30^\circ = 100$ ft. The time it takes the box to slide completely down the plane is the solution of s(t) = 100 or $t^2 = 25/2$, so $t \approx 3.54$ s.

(ii) Integrating ds/dt = 4t gives $s(t) = 2t^2 + c_2$. Using s(0) = 0 gives $c_2 = 0$, so $s(t) = 2t^2 \in$ the solution of s(t) = 100 is now $t \approx 7.07$ s.

(*iii*) Integrating $ds/dt = 48 - 48e^{-t/12}$ and using s(0) = 0 to determine the constant integration, we obtain $s(t) = 48t + 576e^{-t/12} - 576$. With the aid of a CAS we find that $\frac{1}{2}$ solution of s(t) = 100, or

$$100 = 48t + 576e^{-t/12} - 576$$
 or $0 = 48t + 576e^{-t/12} - 676t$

is now $t \approx 7.84$ s.

(b) The differential equation $m dv/dt = mg \sin \theta - \mu mg \cos \theta$ can be written

$$m\frac{dv}{dt} = mg\cos\theta(\tan\theta - \mu).$$

If $\tan \theta = \mu$, dv/dt = 0 and v(0) = 0 implies that v(t) = 0. If $\tan \theta < \mu$ and v(0) = 0. integration implies $v(t) = g \cos \theta (\tan \theta - \mu)t < 0$ for all time t.

(c) Since $\tan 23^\circ = 0.4245$ and $\mu = \sqrt{3}/4 = 0.4330$, we see that $\tan 23^\circ < 0.4330$. The difference equation is $dv/dt = 32 \cos 23^\circ (\tan 23^\circ - \sqrt{3}/4) = -0.251493$. Integration and the use

N

2000 -

Δ.--

the initial condition gives v(t) = -0.251493t + 1. When the box stops, v(t) = 0 or 0 = -0.251493t + 1 or t = 3.976254 s. From $s(t) = -0.125747t^2 + t$ we find s(3.976254) = 1.988119 ft.

(d) With $v_0 > 0$, $v(t) = -0.251493t + v_0$ and $s(t) = -0.125747t^2 + v_0t$. Because two real positive solutions of the equation s(t) = 100, or $0 = -0.125747t^2 + v_0t - 100$, would be physically meaningless, we use the quadratic formula and require that $b^2 - 4ac = 0$ or $v_0^2 - 50.2987 = 0$. From this last equality we find $v_0 \approx 7.092164$ ft/s. For the time it takes the box to traverse the entire inclined plane, we must have $0 = -0.125747t^2 + 7.092164t - 100$. Mathematica gives complex roots for the last equation: $t = 28.2001 \pm 0.0124458i$. But, for

$$0 = -0.125747t^2 + 7.092164691t - 100,$$

the roots are t = 28.1999 s and t = 28.2004 s. So if $v_0 > 7.092164$, we are guaranteed that the box will slide completely down the plane.

- 45. (a) We saw in part (b) of Problem 36 that the ascent time is $t_a = 9.375$. To find when the cannonball hits the ground we solve $s(t) = -16t^2 + 300t = 0$, getting a total time in flight of t = 18.75 s. Thus, the time of descent is $t_d = 18.75 9.375 = 9.375$. The impact velocity is $v_i = v(18.75) = -300$, which has the same magnitude as the initial velocity.
 - (b) We saw in Problem 37 that the ascent time in the case of air resistance is $t_a = 9.162$. Solving $s(t) = 1,340,000 6,400t 1,340,000e^{-0.005t} = 0$ we see that the total time of flight is 18.466 s. Thus, the descent time is $t_d = 18.466 - 9.162 = 9.304$. The impact velocity is $v_i = v(18.466) = -290.91$, compared to an initial velocity of $v_0 = 300$.

Exercises 3.2

Nonlinear Models

1 a) Solving N(1 - 0.0005N) = 0 for N we find the equilibrium solutions N = 0 and N = 2000. When 0 < N < 2000, dN/dt > 0. From the phase portrait we see that $\lim_{t\to\infty} N(t) = 2000$. A graph of the solution is shown in part (b).

Exercises 3.2 Nonlinear Models

(b) Separating variables and integrating we have

$$\frac{dN}{N(1-0.0005N)} = \left(\frac{1}{N} - \frac{1}{N-2000}\right) dN = dt$$

$$\lim_{t \to \infty} N - \ln(N-2000) = t + c$$

N

and

$$\ln N - \ln(N - 2000) = t + c.$$

Solving for N we get $N(t) = 2000e^{c+t}/(1+e^{c+t}) = 2000e^{c}e^{t}/(1+e^{c}e^{t})$. Using N(0) = 1 and solving for e^c we find $e^c = 1/1999$ and so $N(t) = 2000e^t/(1999 + e^t)$. Then N(10) = 1833.5. so 1834 companies are expected to adopt the new technology when t = 10.

2. From dN/dt = N(a - bN) and N(0) = 500 we obtain

$$N = \frac{500a}{500b + (a - 500b)e^{-at}} \,.$$

Since $\lim_{t\to\infty} N = a/b = 50,000$ and N(1) = 1000 we have a = 0.7033, b = 0.00014, also $N = 50.000 / (1 + 99e^{-0.7033l}).$

- 3. From $dP/dt = P(10^{-1} 10^{-7}P)$ and P(0) = 5000 we obtain $P = 500/(0.0005 + 0.0995e^{-0.1^2} 10^{-1}P)$ that $P \rightarrow 1,000,000$ as $t \rightarrow \infty$. If P(t) = 500,000 then t = 52.9 months.
- 4. (a) We have dP/dt = P(a bP) with P(0) = 3.929 million. Using separation of variables obtain

$$P(t) = \frac{3.929a}{3.929b + (a - 3.929b)e^{-at}} = \frac{a/b}{1 + (a/3.929b - 1)e^{-at}}$$
$$= \frac{c}{1 + (c/3.929 - 1)e^{-at}},$$

where c = a/b. At t = 60(1850) the population is 23.192 million, so

$$23.192 = \frac{c}{1 + (c/3.929 - 1)e^{-60a}}$$

or $c = 23.192 + 23.192(c/3.929 - 1)e^{-60a}$. At t = 120(1910),

$$91.972 = \frac{c}{1 + (c/3.929 - 1)e^{-120a}}$$

or $c = 91.972 + 91.972(c/3.929 - 1)(e^{-60a})^2$. Combining the two equations for c we get

$$\left(\frac{(c-23.192)/23.192}{c/3.929-1}\right)^2 \left(\frac{c}{3.929}-1\right) = \frac{c-91.972}{91.972}$$

or

$$91.972(3.929)(c - 23.192)^2 = (23.192)^2(c - 91.972)(c - 3.929).$$

The solution of this quadratic equation is c = 197.274. This in turn gives a = 0.0313. Then:

$$P(t) = \frac{197.274}{1 + 49.21e^{-0.0313t}}$$

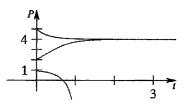
100

≀b)	T T	Census	Predicted		%
(U)	Year	Population	Population	Error	Error
	1790	3.929	3.929	0.000	0.00
	1800	5.308	5.334	-0.026	-0.49
	1810	7.240	7.222	0.018	0.24
	1820	9.638	9.746	-0.108	-1.12
	1830	12.866	13.090	-0.224	-1.74
	1840	17.069	17.475	-0.406	-2.38
	1850	23.192	23.143	0.049	0.21
	1860	31.433	30.341	1.092	3.47
	1870	38.558	39.272	-0.714	-1.85
	1880	50.156	50.044	0.112	0.22
	1890	62.948	62.600	0.348	0.55
	1900	75.996	76.666	-0.670	-0.88
	1910	91.972	91.73 9	0,233	0.25
	1920	105.711	107.143	-1.432	-1.35
	1930	122.775	122.140	0.635	0.52
	1940	131,669	136.068	-4.399	-3.34
	1950	150.697	148.445	2.252	1.49

The model predicts a population of 159.0 million for 1960 and 167.8 million for 1970. The census populations for these years were 179.3 and 203.3, respectively. The percentage errors are 12.8 and 21.2, respectively.

- 1. (a) The differential equation is dP/dt = P(5 P) 4. Solving P(5 P) 4 = 0 for Pwe obtain equilibrium solutions P = 1 and P = 4. The phase portrait is shown on the right and solution curves are shown in part (b). We see that for $P_0 > 4$ and $1 < P_0 < 4$ the population approaches 4 as t increases. For 0 < P < 1 the population decreases to 0 in finite time.
 - \mathbf{b}) The differential equation is

$$\frac{dP}{dt} = P(5-P) - 4 = -(P^2 - 5P + 4) = -(P - 4)(P - 1).$$



Separating variables and integrating, we obtain

$$\frac{dP}{(P-4)(P-1)} = -dt$$
$$\left(\frac{1/3}{P-4} - \frac{1/3}{P-1}\right)dP = -dt$$
$$\frac{1}{3}\ln\left|\frac{P-4}{P-1}\right| = -t + c$$
$$\frac{P-4}{P-1} = c_1 e^{-3t}.$$

Setting t = 0 and $P = P_0$ we find $c_1 = (P_0 - 4)/(P_0 - 1)$. Solving for P we obtain

$$P(t) = \frac{4(P_0 - 1) - (P_0 - 4)e^{-3t}}{(P_0 - 1) - (P_0 - 4)e^{-3t}}.$$

101

Exercises 3.2 Nonlinear Models

(c) To find when the population becomes extinct in the case $0 < P_0 < 1$ we set P = 0 in

$$\frac{P-4}{P-1} = \frac{P_0-4}{P_0-1} e^{-3t}$$

from part (a) and solve for t. This gives the time of extinction

$$t = -\frac{1}{3} \ln \frac{4(P_0 - 1)}{P_0 - 4} \,.$$

6. Solving $P(5-P) - \frac{25}{4} = 0$ for P we obtain the equilibrium solution $P = \frac{5}{2}$. For $P \neq \frac{5}{2}$, dP/dt < 0. Thus, if $P_0 < \frac{5}{2}$, the population becomes extinct (otherwise there would be another equilibrium solution.) Using separation of variables to solve the initial-value problem, we get

$$P(t) = [4P_0 + (10P_0 - 25)t]/[4 + (4P_0 - 10)t].$$

To find when the population becomes extinct for $P_0 < \frac{5}{2}$ we solve P(t) = 0 for t. We see that the time of extinction is $t = 4P_0/5(5 - 2P_0)$.

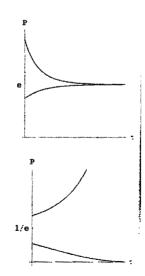
7. Solving P(5 - P) - 7 = 0 for P we obtain complex roots, so there are no equilibrium solutions. Since dP/dt < 0 for all values of P, the population becomes extinct for any initial condition. Using separation of variables to solve the initial-value problem, we get

$$P(t) = \frac{5}{2} + \frac{\sqrt{3}}{2} \tan\left[\tan^{-1}\left(\frac{2P_0 - 5}{\sqrt{3}}\right) - \frac{\sqrt{3}}{2}t\right].$$

Solving P(t) = 0 for t we see that the time of extinction is

$$t = \frac{2}{3} \left(\sqrt{3} \tan^{-1}(5/\sqrt{3}) + \sqrt{3} \tan^{-1}[(2P_0 - 5)/\sqrt{3}] \right).$$

- 8. (a) The differential equation is $dP/dt = P(1 \ln P)$, which has the equilibrium solution P = e. When $P_0 > e$, dP/dt < 0, and when $P_0 < e$, dP/dt > 0.
 - (b) The differential equation is $dP/dt = P(1 + \ln P)$, which has the equilibrium solution P = 1/e. When $P_0 > 1/e$, dP/dt > 0, and when $P_0 < 1/e$, dP/dt < 0.



(c) From $dP/dt = P(a - b \ln P)$ we obtain $-(1/b) \ln |a - b \ln P| = t + c_1$ so that $P = e^{a/b}e^{-ce^{-t}}$. If $P(0) = P_0$ then $c = (a/b) - \ln P_0$.

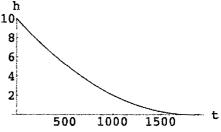
9. Let X = X(t) be the amount of C at time t and dX/dt = k(120 - 2X)(150 - X). If $X \oplus = 0$ and X(5) = 10, then

$$X(t) = \frac{150 - 150e^{180kt}}{1 - 2.5e^{180kt}},$$

where k = .0001259 and X(20) = 29.3 grams. Now by L'Hôpital's rule, $X \to 60$ as $t \to \infty$, so that the amount of $A \to 0$ and the amount of $B \to 30$ as $t \to \infty$.

- 11. From $dX/dt = k(150 X)^2$, X(0) = 0, and X(5) = 10 we obtain X = 150 150/(150kt + 1) where k = .000095238. Then X(20) = 33.3 grams and $X \to 150$ as $t \to \infty$ so that the amount of $A \to 0$ and the amount of $B \to 0$ as $t \to \infty$. If X(t) = 75 then t = 70 minutes.
- 11. (a) The initial-value problem is $dh/dt = -8A_h\sqrt{h}/A_w$, h(0) = H. Separating variables and integrating we have

$$\frac{dh}{\sqrt{h}} = -\frac{8A_h}{A_w} dt$$
 and $2\sqrt{h} = -\frac{8A_h}{A_w}t + c.$



Using h(0) = H we find $c = 2\sqrt{H}$, so the solution of the initial-value problem is $\sqrt{h(t)} = (A_w\sqrt{H} - 4A_ht)/A_w$, where $A_w\sqrt{H} - 4A_ht \ge 0$. Thus, $h(t) = (A_w\sqrt{H} - 4A_ht)^2/A_w^2$ for $0 \le t \le A_w\sqrt{H}/4A_h$.

- b) Identifying H = 10, $A_w = 4\pi$, and $A_h = \pi/576$ we have $h(t) = t^2/331,776 (\sqrt{5/2}/144)t + 10$. Solving h(t) = 0 we see that the tank empties in $576\sqrt{10}$ seconds or 30.36 minutes.
- To obtain the solution of this differential equation we use h(t) from Problem 13 in Exercises 1.3. Then $h(t) = (A_w \sqrt{H} - 4cA_h t)^2 / A_w^2$. Solving h(t) = 0 with c = 0.6 and the values from Problem 11 we see that the tank empties in 3035.79 seconds or 50.6 minutes.
- a) Separating variables and integrating gives

$$6h^{3/2}dh = -5dt$$
 and $\frac{12}{5}h^{5/2} = -5t + c.$

Using h(0) = 20 we find $c = 1920\sqrt{5}$, so the solution of the initial-value problem is $h(t) = (800\sqrt{5} - \frac{25}{12}t)^{2/5}$. Solving h(t) = 0 we see that the tank empties in $384\sqrt{5}$ seconds or 14.31 minutes.

b) When the height of the water is h, the radius of the top of the water is $r = h \tan 30^\circ = h/\sqrt{5}$ and $A_w = \pi h^2/3$. The differential equation is

$$\frac{dh}{dt} = -c\frac{A_h}{A_w}\sqrt{2gh} = -0.6\frac{\pi(2/12)^2}{\pi h^2/3}\sqrt{64h} = -\frac{2}{5h^{3/2}}.$$

Separating variables and integrating gives

$$5h^{3/2}dh = -2 dt$$
 and $2h^{5/2} = -2t + c.$

Using h(0) = 9 we find c = 486, so the solution of the initial-value problem is $h(t) = (243-t)^{2/5}$. Solving h(t) = 0 we see that the tank empties in 243 seconds or 4.05 minutes.

14. When the height of the water is h, the radius of the top of the water is $\frac{2}{5}(20 - h)$ at $A_w = 4\pi(20 - h)^2/25$. The differential equation is

$$\frac{dh}{dt} = -c\frac{A_h}{A_w}\sqrt{2gh} = -0.6\frac{\pi(2/12)^2}{4\pi(20-h)^2/25}\sqrt{64h} = -\frac{5}{6}\frac{\sqrt{h}}{(20-h)^2}$$

Separating variables and integrating we have

$$\frac{(20-h)^2}{\sqrt{h}}dh = -\frac{5}{6}dt \quad \text{and} \quad 800\sqrt{h} - \frac{80}{3}h^{3/2} + \frac{2}{5}h^{5/2} = -\frac{5}{6}t + c.$$

Using h(0) = 20 we find $c = 2560\sqrt{5}/3$, so an implicit solution of the initial-value problem is

$$800\sqrt{h} - \frac{80}{3}h^{3/2} + \frac{2}{5}h^{5/2} = -\frac{5}{6}t + \frac{2560\sqrt{5}}{3}$$

To find the time it takes the tank to empty we set h = 0 and solve for t. The tank empties $1024\sqrt{5}$ seconds or 38.16 minutes. Thus, the tank empties more slowly when the base of the constant is on the bottom.

7

15. (a) After separating variables we obtain

$$\frac{m \, av}{mg - kv^2} = dt$$

$$\frac{1}{g} \frac{dv}{1 - (\sqrt{k} \, v / \sqrt{mg} \,)^2} = dt$$

$$\frac{\sqrt{mg}}{\sqrt{k} \, g} \frac{\sqrt{k/mg} \, dv}{1 - (\sqrt{k} \, v / \sqrt{mg} \,)^2} = dt$$

$$\sqrt{\frac{m}{kg}} \tanh^{-1} \frac{\sqrt{k} \, v}{\sqrt{mg}} = t + c$$

$$\tanh^{-1} \frac{\sqrt{k} \, v}{\sqrt{mg}} = \sqrt{\frac{kg}{m}} \, t + c_1.$$

Thus the velocity at time t is

$$v(t) = \sqrt{\frac{mg}{k}} \tanh\left(\sqrt{\frac{kg}{m}}t + c_1\right).$$

Setting t = 0 and $v = v_0$ we find $c_1 = \tanh^{-1}(\sqrt{k} v_0 / \sqrt{mg})$.

- b) Since $\tanh t \to 1$ as $t \to \infty$, we have $v \to \sqrt{mg/k}$ as $t \to \infty$.
- c) Integrating the expression for v(t) in part (a) we obtain an integral of the form $\int du/u$:

$$s(t) = \sqrt{\frac{mg}{k}} \int \tanh\left(\sqrt{\frac{kg}{m}}t + c_1\right) dt = \frac{m}{k} \ln\left[\cosh\left(\sqrt{\frac{kg}{m}}t + c_1\right)\right] + c_2.$$

Setting t = 0 and s = 0 we find $c_2 = -(m/k) \ln(\cosh c_1)$, where c_1 is given in part (a).

15 The differential equation is $m dv/dt = -mg - kv^2$. Separating variables and integrating, we have

$$\frac{dv}{mg + kv^2} = -\frac{dt}{m}$$

$$\frac{1}{\sqrt{mgk}} \tan^{-1} \left(\frac{\sqrt{k}v}{\sqrt{mg}}\right) = -\frac{1}{m}t + c$$

$$\tan^{-1} \left(\frac{\sqrt{k}v}{\sqrt{mg}}\right) = -\sqrt{\frac{gk}{m}}t + c_1$$

$$v(t) = \sqrt{\frac{mg}{k}} \tan\left(c_1 - \sqrt{\frac{gk}{m}}t\right)$$

Setting v(0) = 300, $m = \frac{16}{32} = \frac{1}{2}$, g = 32, and k = 0.0003, we find $v(t) = 230.94 \tan(c_1 - 0.138564t)$ and $c_1 = 0.914743$. Integrating

$$v(t) = 230.94 \tan(0.914743 - 0.138564t)$$

we get

$$s(t) = 1666.67 \ln |\cos(0.914743 - 0.138564t)| + c_2.$$

Using s(0) = 0 we find $c_2 = 823.843$. Solving v(t) = 0 we see that the maximum height is attained when t = 6.60159. The maximum height is s(6.60159) = 823.843 ft.

17. (a) Let ρ be the weight density of the water and V the volume of the object. Archimedes' principle states that the upward buoyant force has magnitude equal to the weight of the water displaced. Taking the positive direction to be down, the differential equation is

$$m\frac{dv}{dt} = mg - kv^2 - \rho V.$$

(b) Using separation of variables we have

$$\frac{m \, dv}{(mg - \rho V) - kv^2} = dt$$
$$\frac{m}{\sqrt{k}} \frac{\sqrt{k} \, dv}{(\sqrt{mg - \rho V})^2 - (\sqrt{k} \, v)^2} = dt$$
$$\frac{m}{\sqrt{k}} \frac{1}{\sqrt{mg - \rho V}} \tanh^{-1} \frac{\sqrt{k} \, v}{\sqrt{mg - \rho V}} = t + c.$$

105

Thus

$$v(t) = \sqrt{\frac{mg - \rho V}{k}} \tanh\left(\frac{\sqrt{kmg - k\rho V}}{m}t + c_1\right).$$

(c) Since $\tanh t \to 1$ as $t \to \infty$, the terminal velocity is $\sqrt{(mg - \rho V)/k}$.

18. (a) Writing the equation in the form $(x - \sqrt{x^2 + y^2})dx + y dy = 0$ we identify $M = x - \sqrt{x^2 + y^2}$ and N = y. Since M and N are both homogeneous functions of degree 1 we use the substitution y = ux. It follows that

$$\left(x - \sqrt{x^2 + u^2 x^2} \right) dx + ux(u \, dx + x \, du) = 0$$

$$x \left[1 - \sqrt{1 + u^2} + u^2 \right] dx + x^2 u \, du = 0$$

$$- \frac{u \, du}{1 + u^2 - \sqrt{1 + u^2}} = \frac{dx}{x}$$

$$\frac{u \, du}{\sqrt{1 + u^2} \left(1 - \sqrt{1 + u^2} \right)} = \frac{dx}{x}$$

Letting $w = 1 - \sqrt{1 + u^2}$ we have $dw = -u \, du / \sqrt{1 + u^2}$ so that

$$-\ln\left|1 - \sqrt{1 + u^2}\right| = \ln|x| + c$$

$$\frac{1}{1 - \sqrt{1 + u^2}} = c_1 x$$

$$1 - \sqrt{1 + u^2} = -\frac{c_2}{x} \qquad (-c_2 = 1/c_1)$$

$$1 + \frac{c_2}{x} = \sqrt{1 + \frac{y^2}{x^2}}$$

$$1 + \frac{2c_2}{x} + \frac{c_2^2}{x^2} = 1 + \frac{y^2}{x^2}.$$

Solving for y^2 we have

$$y^2 = 2c_2x + c_2^2 = 4\left(\frac{c_2}{2}\right)\left(x + \frac{c_2}{2}\right)$$

which is a family of parabolas symmetric with respect to the x-axis with vertex at $(-c_2/2, 0)$ and focus at the origin.

(b) Let $u = x^2 + y^2$ so that

$$\frac{du}{dx} = 2x + 2y \frac{dy}{dx} \,.$$

106

Then

$$y\frac{dy}{dx} = \frac{1}{2}\frac{du}{dx} - x$$

and the differential equation can be written in the form

$$\frac{1}{2}\frac{du}{dx} - x = -x + \sqrt{u} \quad \text{or} \quad \frac{1}{2}\frac{du}{dx} = \sqrt{u}.$$

Separating variables and integrating gives

$$\frac{du}{2\sqrt{u}} = dx$$

$$\sqrt{u} = x + c$$

$$u = x^2 + 2cx + c^2$$

$$x^2 + y^2 = x^2 + 2cx + c^2$$

$$y^2 = 2cx + c^2.$$

19. (a) From $2W^2 - W^3 = W^2(2 - W) = 0$ we see that W = 0 and W = 2 are constant solutions.

(b) Separating variables and using a CAS to integrate we get

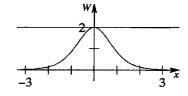
$$\frac{dW}{W\sqrt{4-2W}} = dx$$
 and $-\tanh^{-1}\left(\frac{1}{2}\sqrt{4-2W}\right) = x + c.$

Using the facts that the hyperbolic tangent is an odd function and $1 - \tanh^2 x = \operatorname{sech}^2 x$ we have

$$\frac{1}{2}\sqrt{4-2W} = \tanh(-x-c) = -\tanh(x+c)$$
$$\frac{1}{4}(4-2W) = \tanh^2(x+c)$$
$$1 - \frac{1}{2}W = \tanh^2(x+c)$$
$$\frac{1}{2}W = 1 - \tanh^2(x+c) = \operatorname{sech}^2(x+c).$$

Thus, $W(x) = 2 \operatorname{sech}^2(x+c)$.

(c) Letting x = 0 and W = 2 we find that $\operatorname{sech}^2(c) = 1$ and c = 0.



a) Solving $r^2 + (10 - h)^2 = 10^2$ for r^2 we see that $r^2 = 20h - h^2$. Combining the rate of input of water, π , with the rate of output due to evaporation, $k\pi r^2 = k\pi (20h - h^2)$, we have dV/dt =

107

 $\pi - k\pi (20h - h^2)$. Using $V = 10\pi h^2 - \frac{1}{3}\pi h^3$, we see also that $dV/dt = (20\pi h - \pi h^2)dh/d^2$. Thus,

$$(20\pi h - \pi h^2)\frac{dh}{dt} = \pi - k\pi(20h - h^2) \quad \text{and} \quad \frac{dh}{dt} = \frac{1 - 20kh + kh^2}{20h - h^2}$$

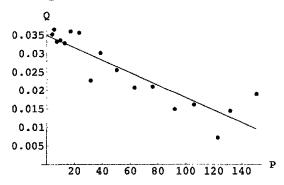
(b) Letting k = 1/100, separating variables and integrating (with the help of a CAS), we get $\frac{100h(h-20)}{(h-10)^2} dh = dt \text{ and } \frac{100(h^2 - 10h + 100)}{10 - h} = t + c.$ Using h(0) = 0 we find c = 1000, and solving for h we get $h(t) = 0.005(\sqrt{t^2 + 4000t} - t)$, where the positive square root is chosen because $h \ge 0$.

- (c) The volume of the tank is $V = \frac{2}{3}\pi(10)^3$ feet, so at a rate of π cubic feet per minute, the tauwill fill in $\frac{2}{3}(10)^3 \approx 666.67$ minutes ≈ 11.11 hours.
- (d) At 666.67 minutes, the depth of the water is h(666.67) = 5.486 feet. From the graph in (b) suspect that $\lim_{t\to\infty} h(t) = 10$, in which case the tank will never completely fill. To prove the compute the limit of h(t):

$$\lim_{t \to \infty} h(t) = 0.005 \lim_{t \to \infty} \left(\sqrt{t^2 + 4000t} - t \right) = 0.005 \lim_{t \to \infty} \frac{t^2 + 4000t - t^2}{\sqrt{t^2 + 4000t} + t}$$
$$= 0.005 \lim_{t \to \infty} \frac{4000t}{t\sqrt{1 + 4000/t} + t} = 0.005 \frac{4000}{1 + 1} = 0.005(2000) = 10.$$

21. (a)	t	P(t)	Q(t)
(,	0	3.929	0.035
	10	5.308	0.036
	20	7.240	0.033
i	30	9.638	0.033
	40	12.866	0.033
	50	17.069	0.036
	60	23.192	0.036
	70	31.433	0.023
	80	38.558	0.030
	90	50.156	0.026
	100	62.948	0.021
	110	75.996	0.021
	120	91.972	0.015
	130	105.711	0.016
	140	122.775	0.007
	150	131.669	0.014
	160	150.697	0.019
	170	179.300	

b) The regression line is Q = 0.0348391 - 0.000168222P.

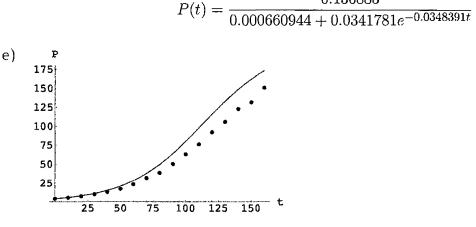


c) The solution of the logistic equation is given in equation (5) in the text. Identifying a = 0.0348391 and b = 0.000168222 we have

$$P(t) = \frac{aP_0}{bP_0 + (a - bP_0)e^{-at}}.$$

0.136883

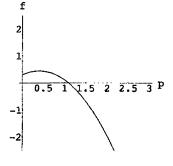
d) With $P_0 = 3.929$ the solution becomes



- f) We identify t = 180 with 1970, t = 190 with 1980, and t = 200 with 1990. The model predicts P(180) = 188.661, P(190) = 193.735, and P(200) = 197.485. The actual population figures for these years are 203.303, 226.542, and 248.765 millions. As $t \to \infty$, $P(t) \to a/b = 207.102$.
- a) Using a CAS to solve $P(1-P) + 0.3e^{-P} = 0$ for P we see that P = 1.09216 is an equilibrium solution.
 - b) Since f(P) > 0 for 0 < P < 1.09216, the solution P(t) of

$$dP/dt = P(1-P) + 0.3e^{-P}, \quad P(0) = P_0,$$

is increasing for $P_0 < 1.09216$. Since f(P) < 0 for P > 1.09216, the solution P(t) is decreasing for $P_0 > 1.09216$. Thus P = 1.09216 is an attractor.



109

(c) The curves for the second initial-value problem are thicker. The equilibrium solution for the logic model is P = 1. Comparing 1.09216 and 1, we see that the percentage increase is 9.216%.



23. To find t_d we solve

$$m\frac{dv}{dt} = mg - kv^2, \qquad v(0) = 0$$

using separation of variables. This gives

$$v(t) = \sqrt{\frac{mg}{k}} \tanh \sqrt{\frac{kg}{m}} t.$$

Integrating and using s(0) = 0 gives

$$s(t) = \frac{m}{k} \ln \left(\cosh \sqrt{\frac{kg}{m}} t \right)$$

To find the time of descent we solve s(t) = 823.84 and find $t_d = 7.77882$. The impact velocity $v(t_d) = 182.998$, which is positive because the positive direction is downward.

24. (a) Solving $v_t = \sqrt{mg/k}$ for k we obtain $k = mg/v_t^2$. The differential equation then becomes

$$m \frac{dv}{dt} = mg - \frac{mg}{v_t^2} v^2$$
 or $\frac{dv}{dt} = g\left(1 - \frac{1}{v_t^2} v^2\right)$.

Separating variables and integrating gives

$$v_t \tanh^{-1} \frac{v}{v_t} = gt + c_1.$$

The initial condition v(0) = 0 implies $c_1 = 0$, so

$$v(t) = v_t \tanh \frac{gt}{v_t}$$

We find the distance by integrating:

$$s(t) = \int v_t \tanh \frac{gt}{v_l} dt = \frac{v_t^2}{g} \ln \left(\cosh \frac{gt}{v_t} \right) + c_2.$$

The initial condition s(0) = 0 implies $c_2 = 0$, so

$$s(t) = rac{v_t^2}{g} \ln\left(\coshrac{gt}{v_t}
ight).$$

In 25 seconds she has fallen 20,000 - 14,800 = 5.200 fect. Using a CAS to solve

$$5200 = (v_t^2/32) \ln\left(\cosh\frac{32(25)}{v_t}\right)$$

for v_t gives $v_t \approx 271.711$ ft/s. Then

$$s(t) = \frac{v_t^2}{g} \ln\left(\cosh\frac{gt}{v_t}\right) = 2307.08\ln(\cosh 0.117772t).$$

- (b) At t = 15, s(15) = 2,542.94 ft and v(15) = s'(15) = 256.287 ft/sec.
- 15. While the object is in the air its velocity is modeled by the linear differential equation m dv/dt = mg kv. Using m = 160, $k = \frac{1}{4}$, and g = 32, the differential equation becomes dv/dt + (1/640)v = 32. The integrating factor is $e^{\int dt/640} = e^{t/640}$ and the solution of the differential equation is $e^{t/640}v = \int 32e^{t/640}dt = 20,480e^{t/640} + c$. Using v(0) = 0 we see that c = -20,480 and $v(t) = 20,480 20,480e^{-t/640}$. Integrating we get $s(t) = 20,480t + 13,107,200e^{-t/640} + c$. Since s(0) = 0, c = -13,107,200 and $s(t) = -13,107,200 + 20,480t + 13,107,200e^{-t/640}$. To find when the object hits the liquid we solve s(t) = 500 75 = 425, obtaining $t_a = 5.16018$. The velocity at the time of impact with the liquid is $v_a = v(t_a) = 164.482$. When the object is in the liquid its velocity is modeled by the nonlinear differential equation $m dv/dt = mg kv^2$. Using m = 160, g = 32, and s = 0.1 this becomes $dv/dt = (51,200 v^2)/1600$. Separating variables and integrating we have

$$\frac{dv}{51,200 - v^2} = \frac{dt}{1600} \quad \text{and} \quad \frac{\sqrt{2}}{640} \ln \left| \frac{v - 160\sqrt{2}}{v + 160\sqrt{2}} \right| = \frac{1}{1600}t + c$$

Solving $v(0) = v_a = 164.482$ we obtain c = -0.00407537. Then, for $v < 160\sqrt{2} = 226.274$,

$$\left| \frac{v - 160\sqrt{2}}{v + 160\sqrt{2}} \right| = e^{\sqrt{2}t/5 - 1.8443}$$
 or $-\frac{v - 160\sqrt{2}}{v + 160\sqrt{2}} = e^{\sqrt{2}t/5 - 1.8443}$.

Solving for v we get

$$v(t) = \frac{13964.6 - 2208.29e^{\sqrt{2t/5}}}{61.7153 + 9.75937e^{\sqrt{2t/5}}}$$

Integrating we find

$$s(t) = 226.275t - 1600\ln(6.3237 + e^{\sqrt{2t/5}}) + c.$$

Solving s(0) = 0 we see that c = 3185.78, so

$$s(t) = 3185.78 + 226.275t - 1600\ln(6.3237 + e^{\sqrt{2t/5}})$$

To find when the object hits the bottom of the tank we solve s(t) = 75, obtaining $t_b = 0.466273$. The time from when the object is dropped from the helicopter to when it hits the bottom of the tank is $t_a + t_b = 5.62708$ seconds.

111

26. The velocity vector of the swimmer is

$$\mathbf{v} = \mathbf{v}_s + \mathbf{v}_r = (-v_s \cos\theta, -v_s \sin\theta) + (0, v_r) = (-v_s \cos\theta, -v_s \sin\theta + v_r) = \left(\frac{dx}{dt}, \frac{dy}{dt}\right).$$

Equating components gives

$$\frac{dx}{dt} = -v_s \cos \theta$$
 and $\frac{dy}{dt} = -v_s \sin \theta + v_r$

 \mathbf{SO}

$$\frac{dx}{dt} = -v_s \frac{x}{\sqrt{x^2 + y^2}}$$
 and $\frac{dy}{dt} = -v_s \frac{y}{\sqrt{x^2 + y^2}} + v_r.$

Thus,

$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{-v_s y + v_r \sqrt{x^2 + y^2}}{-v_s x} = \frac{v_s y - v_r \sqrt{x^2 + y^2}}{v_s x}$$

27. (a) With $k = v_r / v_s$,

$$\frac{dy}{dx} = \frac{y - k\sqrt{x^2 + y^2}}{x}$$

is a first-order homogeneous differential equation (see Section 2.5). Substituting y = ux int: the differential equation gives

$$u + x \frac{du}{dx} = u - k\sqrt{1 + u^2}$$
 or $\frac{du}{dx} = -k\sqrt{1 + u^2}$.

Separating variables and integrating we obtain

$$\int \frac{du}{\sqrt{1+u^2}} = -\int k \, dx \quad \text{or} \quad \ln\left(u + \sqrt{1+u^2}\right) = -k\ln x + \ln c$$

This implies

$$\ln x^k \left(u + \sqrt{1+u^2} \right) = \ln c \quad \text{or} \quad x^k \left(\frac{y}{x} + \frac{\sqrt{x^2 + y^2}}{x} \right) = c.$$

The condition y(1) = 0 gives c = 1 and so $y + \sqrt{x^2 + y^2} = x^{1-k}$. Solving for y gives

$$y(x) = \frac{1}{2} \left(x^{1-k} - x^{1+k} \right).$$

(b) If k = 1, then $v_s = v_r$ and $y = \frac{1}{2}(1 - x^2)$. Since $y(0) = \frac{1}{2}$, the swimmer lands on the websel beach at $(0, \frac{1}{2})$. That is, $\frac{1}{2}$ mile north of (0, 0).

If k > 1, then $v_r > v_s$ and 1 - k < 0. This means $\lim_{x\to 0^+} y(x)$ becomes infinite, since $\lim_{x\to 0^+} x^{1-k}$ becomes infinite. The swimmer never makes it to the west beach and is swept northward with the current.

If 0 < k < 1, then $v_s > v_r$ and 1 - k > 0. The value of y(x) at x = 0 is y(0) = 0. The swimmer has made it to the point (0, 0).

28. The velocity vector of the swimmer is

$$\mathbf{v} = \mathbf{v}_s + \mathbf{v}_r = (-v_s, 0) + (0, v_r) = \left(\frac{dx}{dt}, \frac{dy}{dt}\right).$$

Equating components gives

$$\frac{dx}{dt} = -v_s$$
 and $\frac{dy}{dt} = v_r$

 \mathbf{SO}

$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{v_r}{-v_s} = -\frac{v_r}{v_s}$$

29. The differential equation

$$\frac{dy}{dx} = -\frac{30x(1-x)}{2}$$

separates into $dy = 15(-x + x^2)dx$. Integration gives $y(x) = -\frac{15}{2}x^2 + 5x^3 + c$. The condition y(1) = 0 gives $c = \frac{5}{2}$ and so $y(x) = \frac{1}{2}(-15x^2 + 10x^3 + 5)$. Since $y(0) = \frac{5}{2}$, the swimmer has to walk 2.5 miles back down the west beach to reach (0, 0).

30. This problem has a great many components, so we will consider the case in which air resistance is assumed to be proportional to the velocity. By Problem 35 in Section 3.1 the differential equation is

$$m\frac{dv}{dt} = mg - kv,$$

and the solution is

$$v(t) = \frac{mg}{k} + \left(v_0 - \frac{mg}{k}\right)e^{-kt/m}$$

If we take the initial velocity to be 0, then the velocity at time t is

$$v(t) = \frac{mg}{k} - \frac{mg}{k}e^{-kt/m}.$$

The mass of the raindrop is about $m = 62 \times 0.00000155/32 \approx 0.0000003$ and g = 32, so the volocity at time t is

$$v(t) = \frac{0.0000096}{k} - \frac{0.0000096}{k} e^{-3333333kt}$$

If we let k = 0.0000007, then $v(100) \approx 13.7$ ft/s. In this case 100 is the time in seconds. Since 7 mph ≈ 10.3 ft/s, the assertion that the average velocity is 7 mph is not unreasonable. Of course, this assumes that the air resistance is proportional to the velocity, and, more importantly, that the constant of proportionality is 0.0000007. The assumption about the constant is particularly suspect.

51. (a) Letting c = 0.6, $A_h = \pi (\frac{1}{32} \cdot \frac{1}{12})^2$, $A_w = \pi \cdot 1^2 = \pi$, and g = 32, the differential equation in Proble 12 becomes $dh/dt = -0.00003255\sqrt{h}$. Separating variables and integrating, we get $2\sqrt{h} = -0.00003255t + c$, so $h = (c_1 - 0.00001628t)^2$. Setting h(0) = 2, we find $c = \sqrt{2}$, so $h(t) = (\sqrt{2} - 0.00001628t)^2$, where h is measured in feet and t in seconds.

113

(b) One hour is 3,600 seconds, so the hour mark should be placed at

$$h(3600) = [\sqrt{2} - 0.00001628(3600)]^2 \approx 1.838 \,\text{ft} \approx 22.0525 \,\text{in}.$$

up from the bottom of the tank. The remaining marks corresponding to the passage of 2, 3, 4, ..., 12 hours are placed at the values shown in the table. The marks are not evenly spaced because the water is not draining out at a uniform rate; that is, h(t) is not a linear function of time.

32. (a) In this case $A_w = \pi h^2/4$ and the differential equation is

$$\frac{dh}{dt} = -\frac{1}{7680} \, h^{-3/2}.$$

Separating variables and integrating, we have

$$h^{3/2} dh = -\frac{1}{7680} dt$$
$$\frac{2}{5} h^{5/2} = -\frac{1}{7680} t + c_1$$

Setting h(0) = 2 we find $c_1 = 8\sqrt{2}/5$, so that

$$\frac{2}{5} h^{5/2} = -\frac{1}{7680} t + \frac{8\sqrt{2}}{5} ,$$
$$h^{5/2} = 4\sqrt{2} - \frac{1}{3072} t ,$$

and

$$h = \left(4\sqrt{2} - \frac{1}{3072}t\right)^{2/5}$$

(b) In this case h(4 hr) = h(14,400 s) = 11.8515 inches and h(5 hr) = h(18,000 s) is not a r-number. Using a CAS to solve h(t) = 0, we see that the tank runs dry at t ≈ 17,378 s ≈ 4.1 hr. Thus, this particular conical water clock can only measure time intervals of less than 4.1 hours.

time (seconds)	height (inches)
0	24.0000
1	22.0520
2	20.1864
3	18.4033
4	16.7026
5	15.0844
6	13.5485
7	12.0952
8	10.7242
9	9.4357
10	8.2297
11	7.1060
12	6.0648

114

33. If we let r_h denote the radius of the hole and $A_w = \pi [f(h)]^2$, then the differential equation $dh/dt = -k\sqrt{h}$, where $k = cA_h\sqrt{2g}/A_w$, becomes

$$\frac{dh}{dt} = -\frac{c\pi r_h^2 \sqrt{2g}}{\pi [f(h)]^2} \sqrt{h} = -\frac{8cr_h^2 \sqrt{h}}{[f(h)]^2}.$$

For the time marks to be equally spaced, the rate of change of the height must be a constant; that is, dh/dt = -a. (The constant is negative because the height is decreasing.) Thus

$$-a = -\frac{8cr_h^2\sqrt{h}}{[f(h)]^2}, \qquad [f(h)]^2 = \frac{8cr_h^2\sqrt{h}}{a}, \qquad \text{and} \qquad r = f(h) = 2r_h\sqrt{\frac{2c}{a}} h^{1/4}.$$

Solving for h, we have

$$h = \frac{a^2}{64c^2r_h^4} r^4.$$

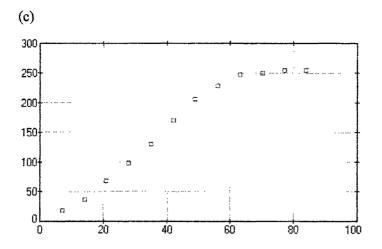
The shape of the tank with c = 0.6, a = 2 ft/12 hr = 1 ft/21,600 s, and $r_h = 1/32(12) = 1/384$ is shown in the above figure.

14. This is a Contributed Problem and the solution has been provided by the authors of the problem.)

(a) Answers will vary

(b) Answers will vary. This sample data is from Data from "Growth of Sunflower Seeds" by H.S. Reed and R.H. Holland, Proc. Nat. Acad. Sci., Volume 5, 1919, page 140. as quoted in http://math.arizona.edu/~dsl/bflower.htm

height
17.93
36.36
67.76
98.10
131.00
169.50
205.50
228.30
247.10
250.50
253.80
254.50



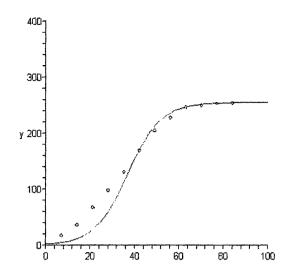
(d) In the case of the sample data, it looks more like logistic growth, with C = 255 cm. C is the height of the flower when it is fully grown.

(e) For our sample data:

day	height	dH/dt	k estimate
7	17.93	2.633	0.000619
14	36.36	3.559	0.000448
21	67.76	4.410	0.000348
28	98.10	4.517	0.000293
35	131.00	5.100	0.000314
42	169.50	5.321	0.000367
49	205.50	4.200	0.000413
56	228.30	2.971	0.000487
63	247.10	1.586	0.000812
70	250.50	0.479	0.000425
77	253.80	0.286	0.000938
84	254.50	0.100	0.000786

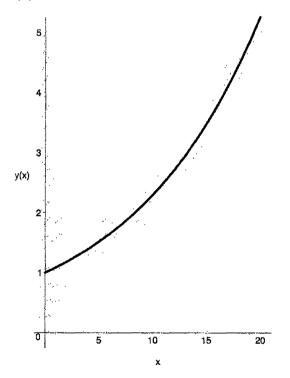
We average the k values to obtain $k \approx 0.000521$. An argument can be made for dropping the first two and last two estimates, to obtain $k \approx 0.000432$.

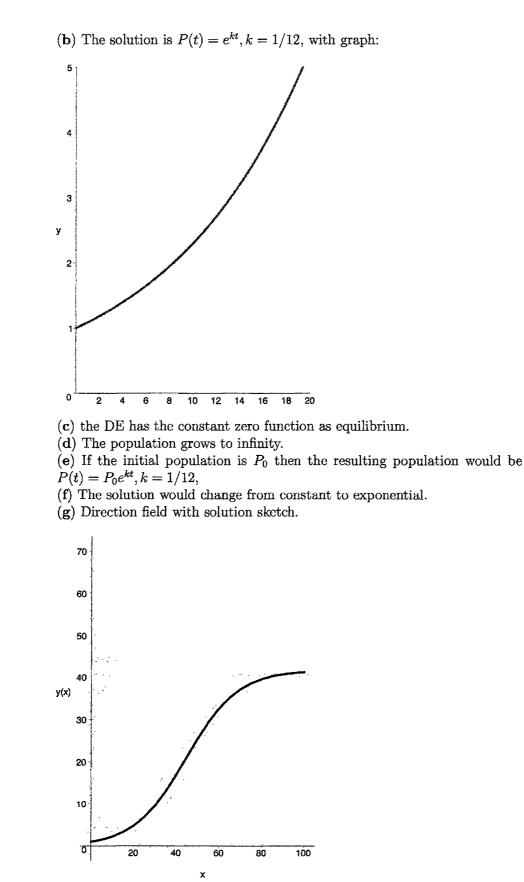
(f) The solution is $y = \frac{255}{1 + Ke^{-133t}}$. We use the height of the sunflower at day 42 to obtain $y = \frac{255}{1 + 133.697e^{-133t}}$.



35. (This is a Contributed Problem and the solution has been provided by the author of the problem.)

(a) Direction field and the solution curve sketch together:



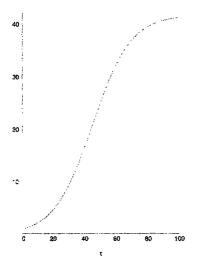


118 http://profesoresparticulareslima.blogspot.pe/

(h) The solution to the IVP is

$$P = \frac{125}{3 + 122e^{-t/12}}$$

and the graph is



]i) the constant solutions to the DE are the zero function and the 125/3 function.

(j) solutions tend to 125/3.

'k) If the initial population is P_0 then the resulting population could be expressed by

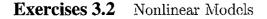
$$P = \frac{125}{3 + 125Ce^{-t/12}}$$

where

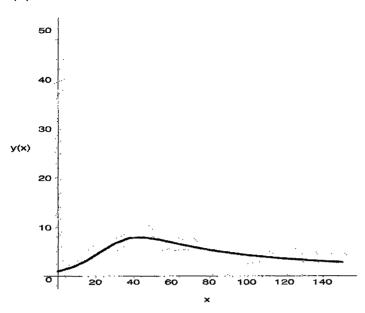
$$C = \frac{1}{P_0} - \frac{3}{125}.$$

1 the solution would no longer be constant but tend to 125/3.

m) there would be little change...the new solution would still tend to 125/3.



(n) Direction field with solution sketch.



(o) the zero function is the only constant solution. (p) The solution is slowly approaching 0; a change to P(0) would still result in a solution curve which tends to 0.

Exercises 3.3 Modeling with Systems of First-Order DEs

1. The linear equation $dx/dt = -\lambda_1 x$ can be solved by either separation of variables or by all grating factor. Integrating both sides of $dx/x = -\lambda_1 dt$ we obtain $\ln |x| = -\lambda_1 t + c$ from which get $x = c_1 e^{-\lambda_1 t}$. Using $x(0) = x_0$ we find $c_1 = x_0$ so that $x = x_0 e^{-\lambda_1 t}$. Substituting this result the second differential equation we have

$$\frac{dy}{dt} + \lambda_2 y = \lambda_1 x_0 e^{-\lambda_1 t}$$

which is linear. An integrating factor is $e^{\lambda_2 t}$ so that

$$\frac{d}{dt} \left[e^{\lambda_2 t} y \right] = \lambda_1 x_0 e^{(\lambda_2 - \lambda_1)t} + c_2$$
$$y = \frac{\lambda_1 x_0}{\lambda_2 - \lambda_1} e^{(\lambda_2 - \lambda_1)t} e^{-\lambda_2 t} + c_2 e^{-\lambda_2 t} = \frac{\lambda_1 x_0}{\lambda_2 - \lambda_1} e^{-\lambda_1 t} + c_2 e^{-\lambda_2 t}.$$

Using y(0) = 0 we find $c_2 = -\lambda_1 x_0/(\lambda_2 - \lambda_1)$. Thus

$$y = \frac{\lambda_1 x_0}{\lambda_2 - \lambda_1} \left(e^{-\lambda_1 t} - e^{-\lambda_2 t} \right).$$

Substituting this result into the third differential equation we have

$$\frac{dz}{dt} = \frac{\lambda_1 \lambda_2 x_0}{\lambda_2 - \lambda_1} \left(e^{-\lambda_1 t} - e^{-\lambda_2 t} \right).$$

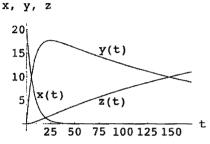
Integrating we find

$$z = -\frac{\lambda_2 x_0}{\lambda_2 - \lambda_1} e^{-\lambda_1 t} + \frac{\lambda_1 x_0}{\lambda_2 - \lambda_1} e^{-\lambda_2 t} + c_3.$$

Using z(0) = 0 we find $c_3 = x_0$. Thus

$$z = x_0 \left(1 - \frac{\lambda_2}{\lambda_2 - \lambda_1} e^{-\lambda_1 t} + \frac{\lambda_1}{\lambda_2 - \lambda_1} e^{-\lambda_2 t} \right).$$

2. We see from the graph that the half-life of A is approximately 4.7 days. To determine the half-life of B we use t = 50 as a base, since at this time the amount of substance A is so small that it contributes very little to substance B. Now we see from the graph that $y(50) \approx 16.2$ and $y(191) \approx 8.1$. Thus, the half-life of B is approximately 141 days.



- 5. The amounts x and y are the same at about t = 5 days. The amounts x and z are the same at about t = 20 days. The amounts y and z are the same at about t = 147 days. The time when y and z are the same makes sense because most of A and half of B are gone, so half of C should have been formed.
- = Suppose that the series is described schematically by $W \Longrightarrow -\lambda_1 X \Longrightarrow -\lambda_2 Y \Longrightarrow -\lambda_3 Z$ where $-\lambda_1, -\lambda_2$, and $-\lambda_3$ are the decay constants for W, X and Y, respectively, and Z is a stable element. Let w(t), x(t), y(t), and z(t) denote the amounts of substances W, X, Y, and Z, respectively. A model for the radioactive series is

$$\frac{dw}{dt} = -\lambda_1 w$$
$$\frac{dx}{dt} = \lambda_1 w - \lambda_2 x$$
$$\frac{dy}{dt} = \lambda_2 x - \lambda_3 y$$
$$\frac{dz}{dt} = \lambda_3 y.$$

The system is

$$x_1' = 2 \cdot 3 + \frac{1}{50}x_2 - \frac{1}{50}x_1 \cdot 4 = -\frac{2}{25}x_1 + \frac{1}{50}x_2 + 6$$
$$x_2' = \frac{1}{50}x_1 \cdot 4 - \frac{1}{50}x_2 - \frac{1}{50}x_2 \cdot 3 = \frac{2}{25}x_1 - \frac{2}{25}x_2.$$

Exercises 3.3 Modeling with Systems of First-Order DEs

6. Let x_1, x_2 , and x_3 be the amounts of salt in tanks A, B, and C, respectively, so that

$$\begin{aligned} x_1' &= \frac{1}{100} x_2 \cdot 2 - \frac{1}{100} x_1 \cdot 6 = \frac{1}{50} x_2 - \frac{3}{50} x_1 \\ x_2' &= \frac{1}{100} x_1 \cdot 6 + \frac{1}{100} x_3 - \frac{1}{100} x_2 \cdot 2 - \frac{1}{100} x_2 \cdot 5 = \frac{3}{50} x_1 - \frac{7}{100} x_2 + \frac{1}{100} x_3 \\ x_3' &= \frac{1}{100} x_2 \cdot 5 - \frac{1}{100} x_3 - \frac{1}{100} x_3 \cdot 4 = \frac{1}{20} x_2 - \frac{1}{20} x_3. \end{aligned}$$

7. (a) A model is

$$\frac{dx_1}{dt} = 3 \cdot \frac{x_2}{100 - t} - 2 \cdot \frac{x_1}{100 + t}, \qquad x_1(0) = 100$$
$$\frac{dx_2}{dt} = 2 \cdot \frac{x_1}{100 + t} - 3 \cdot \frac{x_2}{100 - t}, \qquad x_2(0) = 50.$$

(b) Since the system is closed, no salt enters or leaves the system and $x_1(t) + x_2(t) = 100 + 50 = 1^{\circ}$ for all time. Thus $x_1 = 150 - x_2$ and the second equation in part (a) becomes

$$\frac{dx_2}{dt} = \frac{2(150 - x_2)}{100 + t} - \frac{3x_2}{100 - t} = \frac{300}{100 + t} - \frac{2x_2}{100 + t} - \frac{3x_2}{100 - t}$$

or

$$\frac{dx_2}{dt} + \left(\frac{2}{100+t} + \frac{3}{100-t}\right)x_2 = \frac{300}{100+t},$$

which is linear in x_2 . An integrating factor is

$$e^{2\ln(100+t)-3\ln(100-t)} = (100+t)^2(100-t)^{-3}$$

 \mathbf{so}

$$\frac{d}{dt}[(100+t)^2(100-t)^{-3}x_2] = 300(100+t)(100-t)^{-3}x_2$$

Using integration by parts, we obtain

$$(100+t)^2(100-t)^{-3}x_2 = 300\left[\frac{1}{2}(100+t)(100-t)^{-2} - \frac{1}{2}(100-t)^{-1} + c\right].$$

Thus

$$x_{2} = \frac{300}{(100+t)^{2}} \left[c(100-t)^{3} - \frac{1}{2}(100-t)^{2} + \frac{1}{2}(100+t)(100-t) \right]$$
$$= \frac{300}{(100+t)^{2}} [c(100-t)^{3} + t(100-t)].$$

Using $x_2(0) = 50$ we find c = 5/3000. At t = 30, $x_2 = (300/130^2)(70^3c + 30 \cdot 70) \approx 47.4$ lb.

8. A model is

$$\frac{dx_1}{dt} = (4 \text{ gal/min})(0 \text{ lb/gal}) - (4 \text{ gal/min})\left(\frac{1}{200}x_1 \text{ lb/gal}\right)$$
$$\frac{dx_2}{dt} = (4 \text{ gal/min})\left(\frac{1}{200}x_1 \text{ lb/gal}\right) - (4 \text{ gal/min})\left(\frac{1}{150}x_2 \text{ lb/gal}\right)$$
$$\frac{dx_3}{dt} = (4 \text{ gal/min})\left(\frac{1}{150}x_2 \text{ lb/gal}\right) - (4 \text{ gal/min})\left(\frac{1}{100}x_3 \text{ lb/gal}\right)$$

or

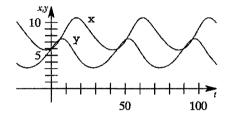
$$\frac{dx_1}{dt} = -\frac{1}{50}x_1$$
$$\frac{dx_2}{dt} = \frac{1}{50}x_1 - \frac{2}{75}x_2$$
$$\frac{dx_3}{dt} = \frac{2}{75}x_2 - \frac{1}{25}x_3.$$

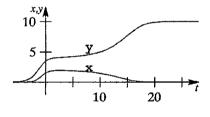
Over a long period of time we would expect x_1 , x_2 , and x_3 to approach 0 because the entering pure water should flush the salt out of all three tanks.

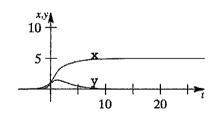
- F. Zooming in on the graph it can be seen that the populations are first equal at about t = 5.6. The approximate periods of x and y are both 45.
- a) The population y(t) approaches 10,000, while the population x(t) approaches extinction.

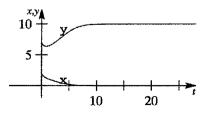
b) The population x(t) approaches 5,000, while the population y(t) approaches extinction.

The population y(t) approaches 10,000, while the population x(t) approaches extinction.

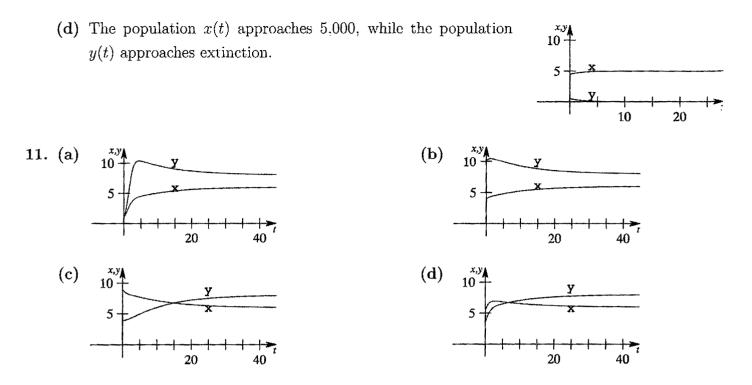








Exercises 3.3 Modeling with Systems of First-Order DEs



In each case the population x(t) approaches 6,000, while the population y(t) approaches 8,000.

12. By Kirchhoff's first law we have $i_1 = i_2 + i_3$. By Kirchhoff's second law, on each loop we have $E(t) = Li'_1 + R_1i_2$ and $E(t) = Li'_1 + R_2i_3 + q/C$ so that $q = CR_1i_2 - CR_2i_3$. Then $i_3 = q' = CR_1i'_2 - CR_2i_3$ so that the system is

$$Li'_{2} + Li'_{3} + R_{1}i_{2} = E(t)$$
$$-R_{1}i'_{2} + R_{2}i'_{3} + \frac{1}{C}i_{3} = 0.$$

13. By Kirchhoff's first law we have $i_1 = i_2 + i_3$. Applying Kirchhoff's second law to each loop v obtain

$$E(t) = i_1 R_1 + L_1 \frac{di_2}{dt} + i_2 R_2$$

and

$$E(t) = i_1 R_1 + L_2 \frac{di_3}{dt} + i_3 R_3.$$

Combining the three equations, we obtain the system

$$L_1 \frac{di_2}{dt} + (R_1 + R_2)i_2 + R_1i_3 = E$$
$$L_2 \frac{di_3}{dt} + R_1i_2 + (R_1 + R_3)i_3 = E$$

124

14. By Kirchhoff's first law we have $i_1 = i_2 + i_3$. By Kirchhoff's second law, on each loop we have $E(t) = Li'_1 + Ri_2$ and $E(t) = Li'_1 + q/C$ so that $q = CRi_2$. Then $i_3 = q' = CRi'_2$ so that system is

$$Li' + Ri_2 = E(t)$$

 $CRi'_2 + i_2 - i_1 = 0.$

15. We first note that s(t) + i(t) + r(t) = n. Now the rate of change of the number of susceptible persons, s(t), is proportional to the number of contacts between the number of people infected and the number who are susceptible; that is, $ds/dt = -k_1 si$. We use $-k_1 < 0$ because s(t) is decreasing. Next, the rate of change of the number of persons who have recovered is proportional to the number infected; that is, $dr/dt = k_2 i$ where $k_2 > 0$ since r is increasing. Finally, to obtain di/dt we use

$$\frac{d}{dt}(s+i+r) = \frac{d}{dt}n = 0.$$

This gives

$$\frac{di}{dt} = -\frac{dr}{dt} - \frac{ds}{dt} = -k_2i + k_1si$$

The system of differential equations is then

$$\begin{aligned} \frac{ds}{dt} &= -k_1 si \\ \frac{di}{dt} &= -k_2 i + k_1 si \\ \frac{dr}{dt} &= k_2 i. \end{aligned}$$

A reasonable set of initial conditions is $i(0) = i_0$, the number of infected people at time 0, $s(0) = i_0$, and r(0) = 0.

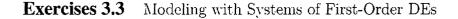
1: a) If we know s(t) and i(t) then we can determine r(t) from s + i + r = n.

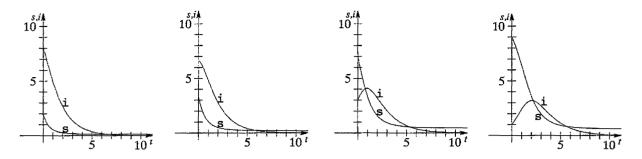
b) In this case the system is

$$\frac{ds}{dt} = -0.2si$$
$$\frac{di}{dt} = -0.7i + 0.2si$$

We also note that when $i(0) = i_0$, $s(0) = 10 - i_0$ since r(0) = 0 and i(t) + s(t) + r(t) = 0 for all values of t. Now $k_2/k_1 = 0.7/0.2 = 3.5$, so we consider initial conditions s(0) = 2, i(0) = 8; s(0) = 3.4, i(0) = 6.6; s(0) = 7, i(0) = 3; and s(0) = 9, i(0) = 1.

125





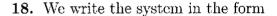
We see that an initial susceptible population greater than k_2/k_1 results in an epidemic in the setthat the number of infected persons increases to a maximum before decreasing to 0. On the other hand, when $s(0) < k_2/k_1$, the number of infected persons decreases from the start and there is : epidemic.

x,y

x(0)

y(0

17. Since $x_0 > y_0 > 0$ we have x(t) > y(t) and y - x < 0. Thus dx/dt < 0and dy/dt > 0. We conclude that x(t) is decreasing and y(t) is increasing. As $t \to \infty$ we expect that $x(t) \to C$ and $y(t) \to C$, where C is a constant common equilibrium concentration.



$$\frac{dx}{dt} = k_1(y - x)$$
$$\frac{dy}{dt} = k_2(x - y)$$

where $k_1 = \kappa/V_A$ and $k_2 = \kappa/V_B$. Letting z(t) = x(t) - y(t) we have

$$\frac{dx}{dt} - \frac{dy}{dt} = k_1(y - x) - k_2(x - y)$$
$$\frac{dz}{dt} = k_1(-z) - k_2z$$
$$\frac{dz}{dt} + (k_1 + k_2)z = 0.$$

This is a linear first-order differential equation with solution $z(t) = c_1 e^{-(k_1 + k_2)t}$. Now

$$\frac{dx}{dt} = -k_1(y-x) = -k_1z = -k_1c_1e^{-(k_1+k_2)t}$$

and

$$x(t) = c_1 \frac{k_1}{k_1 + k_2} e^{-(k_1 + k_2)t} + c_2.$$

Since y(t) = x(t) - z(t) we have

$$y(t) = -c_1 \frac{k_2}{k_1 + k_2} e^{-(k_1 + k_2)t} + c_2.$$

The initial conditions $x(0) = x_0$ and $y(0) = y_0$ imply

$$c_1 = x_0 - y_0$$
 and $c_2 = \frac{x_0k_2 + y_0k_1}{k_1 + k_2}$

The solution of the system is

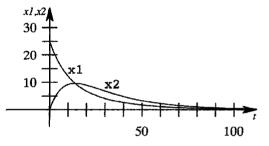
$$x(t) = \frac{(x_0 - y_0)k_1}{k_1 + k_2}e^{-(k_1 + k_2)t} + \frac{x_0k_2 + y_0k_1}{k_1 + k_2}$$
$$y(t) = \frac{(y_0 - x_0)k_2}{k_1 + k_2}e^{-(k_1 + k_2)t} + \frac{x_0k_2 + y_0k_1}{k_1 + k_2}$$

As $t \to \infty$, x(t) and y(t) approach the common limit

$$\frac{x_0k_2 + y_0k_1}{k_1 + k_2} = \frac{x_0\kappa/V_B + y_0\kappa/V_A}{\kappa/V_A + \kappa/V_B} = \frac{x_0V_A + y_0V_B}{V_A + V_B}$$
$$= x_0\frac{V_A}{V_A + V_B} + y_0\frac{V_B}{V_A + V_B}.$$

This makes intuitive sense because the limiting concentration is seen to be a weighted average of the two initial concentrations.

13. Since there are initially 25 pounds of salt in tank A and more in tank B, and since furthermore only pure water is being pumped into tank A, we would expect that $x_1(t)$ mould steadily decrease over time. On the other hand, since salt is being added to tank B from tank A, we would where $x_2(t)$ to increase over time. However, since pure mater is being added to the system at a constant rate and



- mixed solution is being pumped out of the system, it makes sense that the amount of salt in both thinks would approach 0 over time.

21 We assume here that the temperature, T(t), of the metal bar does not affect the temperature, $T_A(t)$, .: the medium in container A. By Newton's law of cooling, then, the differential equations for $T_A(t)$... i T(t) are

$$\begin{aligned} \frac{dT_A}{dt} &= k_A (T_A - T_B), \quad k_A < 0\\ \frac{dT}{dt} &= k (T - T_A), \quad k < 0, \end{aligned}$$

while to the initial conditions $T(0) = T_0$ and $T_A(0) = T_1$. Separating variables in the first mation, we find $T_A(t) = T_B + c_1 e^{k_A t}$. Using $T_A(0) = T_1$ we find $c_1 = T_1 - T_B$, so

$$T_A(t) = T_B + (T_1 - T_B)e^{k_A t}.$$

127

Exercises 3.3 Modeling with Systems of First-Order DEs

Substituting into the second differential equation, we have

$$\frac{dT}{dt} = k(T - T_A) = kT - kT_A = kT - k[T_B + (T_1 - T_B)e^{k_A t}]$$
$$\frac{dT}{dt} - kT = -kT_B - k(T_1 - T_B)e^{k_A t}.$$

This is a linear differential equation with integrating factor $e^{\int -k \, dt} = e^{-kt}$. Then

$$\frac{d}{dt}[e^{-kt}T] = -kT_B e^{-kt} - k(T_1 - T_B)e^{(k_A - k)t}$$
$$e^{-kt}T = T_B e^{-kt} - \frac{k}{k_A - k}(T_1 - T_B)e^{(k_A - k)t} + c_2$$
$$T = T_B - \frac{k}{k_A - k}(T_1 - T_B)e^{k_A t} + c_2 e^{kt}.$$

Using $T(0) = T_0$ we find $c_2 = T_0 - T_B + \frac{k}{k_A - k}(T_1 - T_B)$, so

$$T(t) = T_B - \frac{k}{k_A - k} (T_1 - T_B) e^{k_A t} + \left[T_0 - T_B + \frac{k}{k_A - k} (T_1 - T_B) \right] e^{kt}.$$

21. (This is a Contributed Problem and the solution has been provided by the authors of the problem.)

(a) In the short term there is a mixing of an ethanol solution. In the long term, the system will contain a 20% solution of ethanol.

(b)

$$100P'' = \frac{1}{50}P - \frac{1}{10}Q - P'$$

(c) First write Q = 50P' - 30 + P/2 and then it's straightforward substitution into the equation in (b).

(d) From equation in (19) we find P'(0) = 6/10 + 7/50 - 200/100 = -63/50. The solution is

$$P(t) = \frac{-604}{19} e^{-t/400} \sin(\frac{\sqrt{95}t}{2000}) \sqrt{95} - 100 e^{-t/400} \cos(\frac{\sqrt{95}t}{2000}) + 100$$

(e) The solution is

$$Q(t) = \frac{-270}{19}e^{-t/400}\cos(\frac{\sqrt{95}t}{2000}) - \frac{130}{19}e^{-t/400}\sin(\frac{\sqrt{95}t}{2000})\sqrt{95} + 20 + \frac{23}{19}e^{-t/20}$$

(f) In both cases, the there is a concentration of 20% in each tank; $P(t) \rightarrow 100$ and $Q(t) \rightarrow 20$.

128

- 1. The differential equation is dP/dt = 0.15P.
- 1. True. From dA/dt = kA, $A(0) = A_0$, we have $A(t) = A_0 e^{kt}$ and $A'(t) = kA_0 e^{kt}$, so $A'(0) = kA_0$. At $T = -(\ln 2)k$,

$$A'(-(\ln 2)/k) = kA(-(\ln 2)/k) = kA_0e^{k[-(\ln 2)/k]} = kA_0e^{-\ln 2} = \frac{1}{2}kA_0.$$

- I. From $\frac{dP}{dt} = 0.018P$ and P(0) = 4 billion we obtain $P = 4e^{0.018t}$ so that P(45) = 8.99 billion.
- 4. Let A = A(t) be the volume of CO₂ at time t. From dA/dt = 1.2 A/4 and A(0) = 16 ft³ we obtain $A = 4.8 + 11.2e^{-t/4}$. Since A(10) = 5.7 ft³, the concentration is 0.017%. As $t \to \infty$ we have $A \to 4.8$ ft³ or 0.06%.
- 5. Separating variables, we have

$$\frac{\sqrt{s^2 - y^2}}{y} \, dy = -dx.$$

Substituting $y = s \sin \theta$, this becomes

$$\frac{\sqrt{s^2 - s^2 \sin^2 \theta}}{s \sin \theta} (s \cos \theta) d\theta = -dx$$
$$s \int \frac{\cos^2 \theta}{\sin \theta} d\theta = -\int dx$$
$$s \int \frac{1 - \sin^2 \theta}{\sin \theta} d\theta = -x + c$$
$$s \int (\csc \theta - \sin \theta) d\theta = -x + c$$
$$-s \ln |\csc \theta + \cot \theta| + s \cos \theta = -x + c$$

$$-s\ln\left|\frac{s}{y} + \frac{\sqrt{s^2 - y^2}}{y}\right| + s\frac{\sqrt{s^2 - y^2}}{s} = -x + c.$$

Letting s = 10, this is

$$-10\ln\left|\frac{10}{y} + \frac{\sqrt{100 - y^2}}{y}\right| + \sqrt{100 - y^2} = -x + c.$$

Letting x = 0 and y = 10 we determine that c = 0, so the solution is

$$-10\ln\left|\frac{10+\sqrt{100-y^2}}{y}\right| + \sqrt{100-y^2} = -x$$

or

$$x = 10 \ln \left| \frac{10 + \sqrt{100 - y^2}}{y} \right| - \sqrt{100 - y^2}$$

6. From $V dC/dt = kA(C_s - C)$ and $C(0) = C_0$ we obtain $C = C_s + (C_0 - C_s)e^{-kAt/V}$.

7. (a) The differential equation

$$\frac{dT}{dt} = k(T - T_m) = k[T - T_2 - B(T_1 - T)]$$
$$= k[(1 + B)T - (BT_1 + T_2)] = k(1 + B)\left(T - \frac{BT_1 + T_2}{1 + B}\right)$$

is autonomous and has the single critical point $(BT_1 + T_2)/(1 + B)$. Since k < 0 and B by phase-line analysis it is found that the critical point is an attractor and

$$\lim_{t \to \infty} T(t) = \frac{BT_1 + T_2}{1 + B}$$

Moreover,

$$\lim_{t \to \infty} T_m(t) = \lim_{t \to \infty} [T_2 + B(T_1 - T)] = T_2 + B\left(T_1 - \frac{BT_1 + T_2}{1 + B}\right) = \frac{BT_1 + T_2}{1 + B}$$

(b) The differential equation is

$$\frac{dT}{dt} = k(T - T_m) = k(T - T_2 - BT_1 + BT)$$

or

$$\frac{dT}{dt} - k(1+B)T = -k(BT_1 + T_2).$$

This is linear and has integrating factor $e^{-\int k(1+B)dt} = e^{-k(1+B)t}$. Thus,

$$\frac{d}{dt}[e^{-k(1+B)t}T] = -k(BT_1 + T_2)e^{-k(1+B)t}$$
$$e^{-k(1+B)t}T = \frac{BT_1 + T_2}{1+B}e^{-k(1+B)t} + c$$
$$T(t) = \frac{BT_1 + T_2}{1+B} + ce^{k(1+B)t}.$$

Since k is negative, $\lim_{t\to\infty} T(t) = (BT_1 + T_2)/(1+B)$.

(c) The temperature T(t) decreases to the value $(BT_1 + T_2)/(1 + B)$, whereas $T_m(t)$ increases $(BT_1 + T_2)/(1 + B)$ as $t \to \infty$. Thus, the temperature $(BT_1 + T_2)/(1 + B)$, (which is a weight average

$$\frac{B}{1+B} T_1 + \frac{1}{1+B} T_2$$

130

20

15 10

 k_1

of the two initial temperatures), can be interpreted as an equilibrium temperature. The body cannot get cooler than this value whereas the medium cannot get hotter than this value.

S. By separation of variables and partial fractions,

$$\ln\left|\frac{T-T_m}{T+T_m}\right| - 2\tan^{-1}\left(\frac{T}{T_m}\right) = 4T_m^3kt + c.$$

Then rewrite the right-hand side of the differential equation as

$$\frac{dT}{dt} = k(T^4 - T_m^4) = [(T_m + (T - T_m))^4 - T_m^4]$$

= $kT_m^4 \left[\left(1 + \frac{T - T_m}{T_m} \right)^4 - 1 \right]$
= $kT_m^4 \left[\left(1 + 4\frac{T - T_m}{T_m} + 6\left(\frac{T - T_m}{T_m}\right)^2 \cdots \right) - 1 \right] \leftarrow \text{binomial expansion}$

When $T - T_m$ is small compared to T_m , every term in the expansion after the first two can be ignored, giving

$$\frac{dT}{dt} \approx k_1(T - T_m), \quad \text{where} \quad k_1 = 4kT_m^3.$$

F. We first solve (1 - t/10)di/dt + 0.2i = 4. Separating variables we obtain di/(40 - 2i) = dt/(10 - t). Then

$$-\frac{1}{2}\ln|40-2i| = -\ln|10-t| + c \text{ or } \sqrt{40-2i} = c_1(10-t).$$

Since i(0) = 0 we must have $c_1 = 2/\sqrt{10}$. Solving for i we get $i(t) = 4t - \frac{1}{5}t^2$, $1 \leq t \leq 10$. For $t \geq 10$ the equation for the current becomes 0.2i = 4 or i = 20. Thus

$$i(t) = \begin{cases} 4t - \frac{1}{5}t^2, & 0 \le t < 10\\ 20, & t \ge 10. \end{cases}$$

The graph of i(t) is given in the figure.

1. From
$$y \left[1 + (y')^2 \right] = k$$
 we obtain $dx = (\sqrt{y}/\sqrt{k-y}) dy$. If $y = k \sin^2 \theta$ then

$$dy = 2k\sin\theta\cos\theta \,d\theta$$
, $dx = 2k\left(\frac{1}{2} - \frac{1}{2}\cos 2\theta\right) \,d\theta$, and $x = k\theta - \frac{k}{2}\sin 2\theta + c$.

 $\mathbb{H} x = 0 \text{ when } \theta = 0 \text{ then } c = 0.$

From $dx/dt = k_1 x(\alpha - x)$ we obtain

$$\left(\frac{1/\alpha}{x} + \frac{1/\alpha}{\alpha - x}\right)dx = k_1 dt$$

$$\therefore \text{ that } x = \alpha c_1 e^{\alpha k_1 t} / (1 + c_1 e^{\alpha k_1 t}). \text{ From } dy/dt = k_2 xy \text{ we obtain}$$
$$\ln|y| = \frac{k_2}{k_1} \ln\left|1 + c_1 e^{\alpha k_1 t}\right| + c \quad \text{or} \quad y = c_2 \left(1 + c_1 e^{\alpha k_1 t}\right)^{k_2/2}$$

131

12. In tank A the salt input is

$$\left(7\frac{\text{gal}}{\text{min}}\right)\left(2\frac{\text{lb}}{\text{gal}}\right) + \left(1\frac{\text{gal}}{\text{min}}\right)\left(\frac{x_2}{100}\frac{\text{lb}}{\text{gal}}\right) = \left(14 + \frac{1}{100}x_2\right)\frac{\text{lb}}{\text{min}}$$

The salt output is

$$\left(3\frac{\text{gal}}{\min}\right)\left(\frac{x_1}{100}\frac{\text{lb}}{\text{gal}}\right) + \left(5\frac{\text{gal}}{\min}\right)\left(\frac{x_1}{100}\frac{\text{lb}}{\text{gal}}\right) = \frac{2}{25}x_1\frac{\text{lb}}{\min}$$

In tank B the salt input is

$$\left(5\frac{\mathrm{gal}}{\mathrm{min}}\right)\left(\frac{x_1}{100}\frac{\mathrm{lb}}{\mathrm{gal}}\right) = \frac{1}{20}x_1\frac{\mathrm{lb}}{\mathrm{min}}.$$

The salt output is

$$\left(1\frac{\text{gal}}{\min}\right)\left(\frac{x_2}{100}\frac{\text{lb}}{\text{gal}}\right) + \left(4\frac{\text{gal}}{\min}\right)\left(\frac{x_2}{100}\frac{\text{lb}}{\text{gal}}\right) = \frac{1}{20}x_2\frac{\text{lb}}{\min}$$

The system of differential equations is then

$$\frac{dx_1}{dt} = 14 + \frac{1}{100}x_2 - \frac{2}{25}x_1$$
$$\frac{dx_2}{dt} = \frac{1}{20}x_1 - \frac{1}{20}x_2.$$

13. From $y = -x - 1 + c_1 e^x$ we obtain y' = y + x so that the differential equation of the orthogonal family is

$$\frac{dy}{dx} = -\frac{1}{y+x}$$
 or $\frac{dx}{dy} + x = -y$.

This is a linear differential equation and has integrating factor $e^{\int dy} = e^y$, so

$$\frac{d}{dy}[e^{y}x] = -ye^{y}$$
$$e^{y}x = -ye^{y} + e^{y} + c_{2}$$
$$x = -y + 1 + c_{2}e^{-y}.$$

132

14. Differentiating the family of curves, we have

$$y' = -\frac{1}{(x+c_1)^2} = -\frac{1}{y^2}.$$

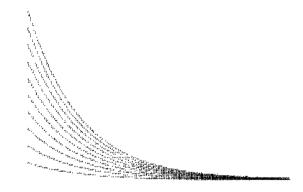
The differential equation for the family of orthogonal trajectories is then $y' = y^2$. Separating variables and integrating we get

$$\frac{dy}{y^2} = dx$$
$$-\frac{1}{y} = x + c_1$$
$$y = -\frac{1}{x + c_1}.$$

15. This is a Contributed Problem and the solution has been provided by the author of the problem.)

(a)
$$p(x) = -\rho(x)g\left(y + \frac{1}{K}\int q(x)\,dx\right)$$

- (b) The ratio is increasing. The ratio is constant.
- (c) $p(x) = k e^{-(\alpha g \rho/K)x}$



d) When the pressure p is constant but the density ρ is a function of x then

$$\rho(x) = -\frac{Kp}{g\left(Ky + \int q(x)\,dx\right)}\,.$$

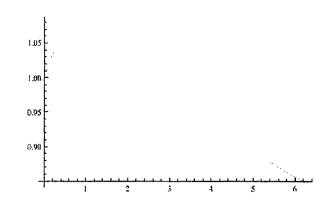
When the Darcy flux is proportional to the density then

$$\rho = \sqrt{\frac{Kp}{2(CKp - \beta gx)}},$$

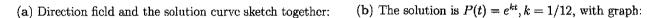
where C is an arbitrary constant.

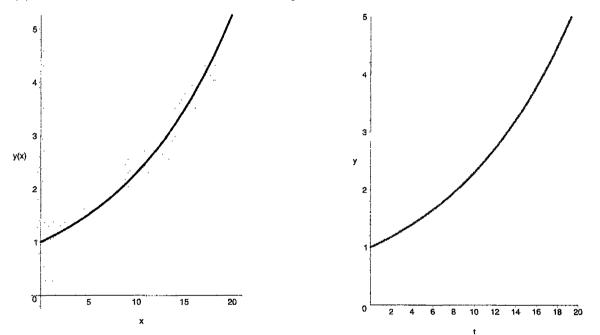
e) As the density and Darcy velocity decreases, the pressure in the container initially increases but then decreases. The density change is less dramatic than the drop in the velocity and has a greater initial effect on the system. However, as the density of the fluid decreases, the effect is to decrease the pressure.

133



16. (This is a Contributed Problem and the solution has been provided by the authors of the problem.)





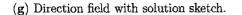
 (\mathbf{c}) the DE has the constant zero function as equilibrium.

(d) The population grows to infinity.

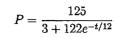
(e) If the initial population is P_0 then the resulting population would be

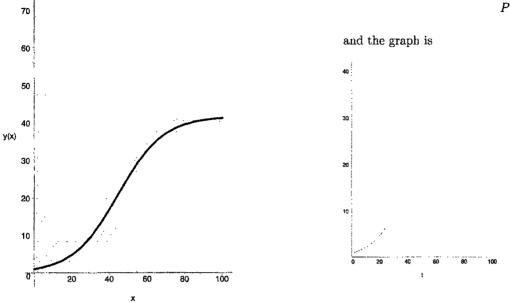
 $P(t) = P_0 e^{kt}, k = 1/12,$

(f) The solution would change from constant to exponential.



(h) The solution to the IVP is





(i) the constant solutions to the DE are the zero function and the 125/3 function.

(j) solutions tend to 125/3.

(k) If the initial population is P_0 then the resulting population could be expressed by

$$P = \frac{125}{3 + 125Ce^{-t/12}}$$

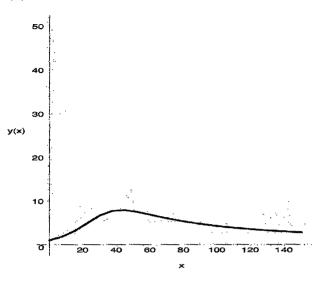
where

$$C = \frac{1}{P_0} - \frac{3}{125}$$

(1) the solution would no longer be constant but tend to 125/3.

(m) there would be little change...the new solution would still tend to 125/3.

(n) Direction field with solution sketch.



- (o) the zero function is the only constant solution. (p) The solution is slowly approaching 0; a change to P(0) would still result
- in a solution curve which tends to 0.

4 Higher-Order Differential Equations

Exercises 4.1

Preliminary Theory—Linear Equations

- I From $y = c_1 e^x + c_2 e^{-x}$ we find $y' = c_1 e^x c_2 e^{-x}$. Then $y(0) = c_1 + c_2 = 0$, $y'(0) = c_1 c_2 = 1$ so that $c_1 = \frac{1}{2}$ and $c_2 = -\frac{1}{2}$. The solution is $y = \frac{1}{2}e^x \frac{1}{2}e^{-x}$.
- From $y = c_1 e^{4x} + c_2 e^{-x}$ we find $y' = 4c_1 e^{4x} c_2 e^{-x}$. Then $y(0) = c_1 + c_2 = 1$, $y'(0) = 4c_1 c_2 = 2$ so that $c_1 = \frac{3}{5}$ and $c_2 = \frac{2}{5}$. The solution is $y = \frac{3}{5}e^{4x} + \frac{2}{5}e^{-x}$.
- E. From $y = c_1 x + c_2 x \ln x$ we find $y' = c_1 + c_2(1 + \ln x)$. Then $y(1) = c_1 = 3$, $y'(1) = c_1 + c_2 = -1$ so that $c_1 = 3$ and $c_2 = -4$. The solution is $y = 3x 4x \ln x$.
- 4. From $y = c_1 + c_2 \cos x + c_3 \sin x$ we find $y' = -c_2 \sin x + c_3 \cos x$ and $y'' = -c_2 \cos x c_3 \sin x$. Then $y(\pi) = c_1 - c_2 = 0, y'(\pi) = -c_3 = 2, y''(\pi) = c_2 = -1$ so that $c_1 = -1, c_2 = -1$, and $c_3 = -2$. The solution is $y = -1 - \cos x - 2 \sin x$.
- From $y = c_1 + c_2 x^2$ we find $y' = 2c_2 x$. Then $y(0) = c_1 = 0$, $y'(0) = 2c_2 \cdot 0 = 0$ and hence y'(0) = 1 is not possible. Since $a_2(x) = x$ is 0 at x = 0, Theorem 4.1 is not violated.
- : In this case we have $y(0) = c_1 = 0$, $y'(0) = 2c_2 \cdot 0 = 0$ so $c_1 = 0$ and c_2 is arbitrary. Two solutions are $y = x^2$ and $y = 2x^2$.
- From $x(0) = x_0 = c_1$ we see that $x(t) = x_0 \cos \omega t + c_2 \sin \omega t$ and $x'(t) = -x_0 \sin \omega t + c_2 \omega \cos \omega t$. Then $x'(0) = x_1 = c_2 \omega$ implies $c_2 = x_1/\omega$. Thus

$$x(t) = x_0 \cos \omega t + \frac{x_1}{\omega} \sin \omega t.$$

• Eslving the system

$$x(t_0) = c_1 \cos \omega t_0 + c_2 \sin \omega t_0 = x_0$$
$$x'(t_0) = -c_1 \omega \sin \omega t_0 + c_2 \omega \cos \omega t_0 = x_1$$

for c_1 and c_2 gives

$$c_1 = \frac{\omega x_0 \cos \omega t_0 - x_1 \sin \omega t_0}{\omega}$$
 and $c_2 = \frac{x_1 \cos \omega t_0 + \omega x_0 \sin \omega t_0}{\omega}$

137

Exercises 4.1 Preliminary Theory Linear Equations

Thus

$$\begin{aligned} x(t) &= \frac{\omega x_0 \cos \omega t_0 - x_1 \sin \omega t_0}{\omega} \cos \omega t + \frac{x_1 \cos \omega t_0 + \omega x_0 \sin \omega t_0}{\omega} \sin \omega t \\ &= x_0 (\cos \omega t \cos \omega t_0 + \sin \omega t \sin \omega t_0) + \frac{x_1}{\omega} (\sin \omega t \cos \omega t_0 - \cos \omega t \sin \omega t_0) \\ &= x_0 \cos \omega (t - t_0) + \frac{x_1}{\omega} \sin \omega (t - t_0). \end{aligned}$$

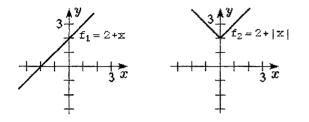
- 9. Since $a_2(x) = x 2$ and $x_0 = 0$ the problem has a unique solution for $-\infty < x < 2$.
- 10. Since $a_0(x) = \tan x$ and $x_0 = 0$ the problem has a unique solution for $-\pi/2 < x < \pi/2$.
- 11. (a) We have $y(0) = c_1 + c_2 = 0$, $y(1) = c_1 e + c_2 e^{-1} = 1$ so that $c_1 = e/(e^2 1)$ $c_2 = -e/(e^2 - 1)$. The solution is $y = e(e^x - e^{-x})/(e^2 - 1)$.
 - (b) We have $y(0) = c_3 \cosh 0 + c_4 \sinh 0 = c_3 = 0$ and $y(1) = c_3 \cosh 1 + c_4 \sinh 1 = c_4 \sinh 1 = s_0 c_3 = 0$ and $c_4 = 1/\sinh 1$. The solution is $y = (\sinh x)/(\sinh 1)$.
 - (c) Starting with the solution in part (b) we have

$$y = \frac{1}{\sinh 1} \sinh x = \frac{2}{e^1 - e^{-1}} \frac{e^x - e^{-x}}{2} = \frac{e^x - e^{-x}}{e^{-1/e}} = \frac{e}{e^2 - 1} (e^x - e^{-x}).$$

- 12. In this case we have $y(0) = c_1 = 1$, $y'(1) = 2c_2 = 6$ so that $c_1 = 1$ and $c_2 = 3$. The solution $y = 1 + 3x^2$.
- 13. From $y = c_1 e^x \cos x + c_2 e^x \sin x$ we find $y' = c_1 e^x (-\sin x + \cos x) + c_2 e^x (\cos x + \sin x)$.
 - (a) We have $y(0) = c_1 = 1$, $y'(\pi) = -e^{\pi}(c_1 + c_2) = 0$ so that $c_1 = 1$ and $c_2 = -1$. The solution $y = e^x \cos x e^x \sin x$.
 - (b) We have $y(0) = c_1 = 1$, $y(\pi) = -e^{\pi} = -1$, which is not possible.
 - (c) We have $y(0) = c_1 = 1$, $y(\pi/2) = c_2 e^{\pi/2} = 1$ so that $c_1 = 1$ and $c_2 = e^{-\pi/2}$. The solution $y = e^x \cos x + e^{-\pi/2} e^x \sin x$.
 - (d) We have $y(0) = c_1 = 0$, $y(\pi) = c_2 e^{\pi} \sin \pi = 0$ so that $c_1 = 0$ and c_2 is arbitrary. Solutions $y = c_2 e^x \sin x$, for any real numbers c_2 .
- 14. (a) We have $y(-1) = c_1 + c_2 + 3 = 0$, $y(1) = c_1 + c_2 + 3 = 4$, which is not possible.
 - (b) We have $y(0) = c_1 \cdot 0 + c_2 \cdot 0 + 3 = 1$, which is not possible.
 - (c) We have $y(0) = c_1 \cdot 0 + c_2 \cdot 0 + 3 = 3$, $y(1) = c_1 + c_2 + 3 = 0$ so that c_1 is arbitrary $c_2 = -3 c_1$. Solutions are $y = c_1 x^2 (c_1 + 3) x^4 + 3$.
 - (d) We have $y(1) = c_1 + c_2 + 3 = 3$, $y(2) = 4c_1 + 16c_2 + 3 = 15$ so that $c_1 = -1$ and $c_2 = 1$. To solution is $y = -x^2 + x^4 + 3$.
- 15. Since $(-4)x + (3)x^2 + (1)(4x 3x^2) = 0$ the set of functions is linearly dependent.

138

- 15. Since $(1)0 + (0)x + (0)e^x = 0$ the set of functions is linearly dependent. A similar argument shows that any set of functions containing f(x) = 0 will be linearly dependent.
- 17. Since $(-1/5)5 + (1)\cos^2 x + (1)\sin^2 x = 0$ the set of functions is linearly dependent.
- 15. Since $(1)\cos 2x + (1)1 + (-2)\cos^2 x = 0$ the set of functions is linearly dependent.
- 13. Since (-4)x + (3)(x 1) + (1)(x + 3) = 0 the set of functions is linearly dependent.
- 11. From the graphs of $f_1(x) = 2 + x$ and $f_2(x) = 2 + |x|$ we see that the set of functions is linearly independent since they cannot be multiples of each other.



- II. Suppose $c_1(1+x) + c_2x + c_3x^2 = 0$. Then $c_1 + (c_1 + c_2)x + c_3x^2 = 0$ and so $c_1 = 0$, $c_1 + c_2 = 0$, and $c_3 = 0$. Since $c_1 = 0$ we also have $c_2 = 0$. Thus, the set of functions is linearly independent.
- Since $(-1/2)e^x + (1/2)e^{-x} + (1)\sinh x = 0$ the set of functions is linearly dependent.
- 21 The functions satisfy the differential equation and are linearly independent since

$$W\left(e^{-3x},e^{4x}\right) = 7e^x \neq 0$$

for $-\infty < x < \infty$. The general solution is

$$y = c_1 e^{-3x} + c_2 e^{4x}.$$

14. The functions satisfy the differential equation and are linearly independent since

 $W(\cosh 2x, \sinh 2x) = 2$

 $\exists x - \infty < x < \infty$. The general solution is

$$y = c_1 \cosh 2x + c_2 \sinh 2x.$$

25 The functions satisfy the differential equation and are linearly independent since

$$W\left(e^x \cos 2x, e^x \sin 2x\right) = 2e^{2x} \neq 0$$

for $-\infty < x < \infty$. The general solution is $y = c_1 e^x \cos 2x + c_2 e^x \sin 2x$.

 2π The functions satisfy the differential equation and are linearly independent since

$$W\left(e^{x/2}, xe^{x/2}\right) = e^x \neq 0$$

 $tr - \infty < x < \infty$. The general solution is

$$y = c_1 e^{x/2} + c_2 x e^{x/2}.$$

139

27. The functions satisfy the differential equation and are linearly independent since

$$W\left(x^3, x^4\right) = x^6 \neq 0$$

for $0 < x < \infty$. The general solution on this interval is

$$y = c_1 x^3 + c_2 x^4.$$

28. The functions satisfy the differential equation and are linearly independent since

$$W\left(\cos(\ln x), \sin(\ln x)\right) = 1/x \neq 0$$

for $0 < x < \infty$. The general solution on this interval is

$$y = c_1 \cos(\ln x) + c_2 \sin(\ln x).$$

29. The functions satisfy the differential equation and are linearly independent since

$$W(x, x^{-2}, x^{-2}\ln x) = 9x^{-6} \neq 0$$

for $0 < x < \infty$. The general solution on this interval is

$$y = c_1 x + c_2 x^{-2} + c_3 x^{-2} \ln x.$$

1

3

30. The functions satisfy the differential equation and are linearly independent since

$$W(1, x, \cos x, \sin x) = 1$$

for $-\infty < x < \infty$. The general solution on this interval is

$$y = c_1 + c_2 x + c_3 \cos x + c_4 \sin x.$$

- 31. The functions $y_1 = e^{2x}$ and $y_2 = e^{5x}$ form a fundamental set of solutions of the associated home necus equation, and $y_p = 6e^x$ is a particular solution of the nonhomogeneous equation.
- 32. The functions $y_1 = \cos x$ and $y_2 = \sin x$ form a fundamental set of solutions of the associated holgeneous equation, and $y_p = x \sin x + (\cos x) \ln(\cos x)$ is a particular solution of the nonhomogeneequation.
- 33. The functions $y_1 = e^{2x}$ and $y_2 = xe^{2x}$ form a fundamental set of solutions of the association homogeneous equation, and $y_p = x^2e^{2x} + x 2$ is a particular solution of the nonhomogeneous equation.
- 34. The functions $y_1 = x^{-1/2}$ and $y_2 = x^{-1}$ form a fundamental set of solutions of the association homogeneous equation, and $y_p = \frac{1}{15}x^2 \frac{1}{6}x$ is a particular solution of the nonhomogeneous equat:

35. (a) We have
$$y'_{p_1} = 6e^{2x}$$
 and $y''_{p_1} = 12e^{2x}$, so
 $y''_{p_1} - 6y'_{p_1} + 5y_{p_1} = 12e^{2x} - 36e^{2x} + 15e^{2x} = -9e^{2x}$.

Also, $y'_{p_2} = 2x + 3$ and $y''_{p_2} = 2$, so

$$y_{p_2}'' - 6y_{p_2}' + 5y_{p_2} = 2 - 6(2x + 3) + 5(x^2 + 3x) = 5x^2 + 3x - 16.$$

(b) By the superposition principle for nonhomogeneous equations a particular solution of $y'' - 6y' + 5y = 5x^2 + 3x - 16 - 9e^{2x}$ is $y_p = x^2 + 3x + 3e^{2x}$. A particular solution of the second equation is

$$y_p = -2y_{p_2} - \frac{1}{9}y_{p_1} = -2x^2 - 6x - \frac{1}{3}e^{2x}.$$

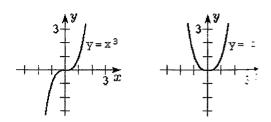
16. (a) $y_{p_1} = 5$

- (b) $y_{p_2} = -2x$
- (c) $y_p = y_{p_1} + y_{p_2} = 5 2x$
- (d) $y_p = \frac{1}{2}y_{p_1} 2y_{p_2} = \frac{5}{2} + 4x$
- . (a) Since $D^2x = 0$, x and 1 are solutions of y'' = 0. Since they are linearly independent, the general solution is $y = c_1 x + c_2$.
 - (b) Since $D^3x^2 = 0$, x^2 , x, and 1 are solutions of y''' = 0. Since they are linearly independent, the general solution is $y = c_1x^2 + c_2x + c_3$.
 - (c) Since $D^4x^3 = 0$, x^3 , x^2 , x, and 1 are solutions of $y^{(4)} = 0$. Since they are linearly independent, the general solution is $y = c_1x^3 + c_2x^2 + c_3x + c_4$.
 - (d) By part (a), the general solution of y'' = 0 is $y_c = c_1 x + c_2$. Since $D^2 x^2 = 2! = 2$, $y_p = x^2$ is a particular solution of y'' = 2. Thus, the general solution is $y = c_1 x + c_2 + x^2$.
 - (e) By part (b), the general solution of y''' = 0 is $y_c = c_1 x^2 + c_2 x + c_3$. Since $D^3 x^3 = 3! = 6$, $y_p = x^3$ is a particular solution of y''' = 6. Thus, the general solution is $y = c_1 x^2 + c_2 x + c_3 + x^3$.
 - (f) By part (c), the general solution of $y^{(4)} = 0$ is $y_c = c_1 x^3 + c_2 x^2 + c_3 x + c_4$. Since $D^4 x^4 = 4! = 24$, $y_p = x^4$ is a particular solution of $y^{(4)} = 24$. Thus, the general solution is $y = c_1 x^3 + c_2 x^2 + c_3 x + c_4 + x^4$.
- . By the superposition principle, if $y_1 = e^x$ and $y_2 = e^{-x}$ are both solutions of a homogeneous linear differential equation, then so are

$$\frac{1}{2}(y_1 + y_2) = \frac{e^x + e^{-x}}{2} = \cosh x \quad \text{and} \quad \frac{1}{2}(y_1 - y_2) = \frac{e^x - e^{-x}}{2} = \sinh x.$$

141

39. (a) From the graphs of $y_1 = x^3$ and $y_2 = |x|^3$ we see that the functions are linearly independent since they cannot be multiples of each other. It is easily shown that $y_1 = x^3$ is a solution of $x^2y'' - 4xy' + 6y = 0$. To show that $y_2 = |x|^3$ is a solution let $y_2 = x^3$ for $x \ge 0$ and let $y_2 = -x^3$ for x < 0.



(b) If
$$x \ge 0$$
 then $y_2 = x^3$ and

$$W(y_1, y_2) = \begin{vmatrix} x^3 & x^3 \\ 3x^2 & 3x^2 \end{vmatrix} = 0.$$

If x < 0 then $y_2 = -x^3$ and

$$W(y_1, y_2) = \begin{vmatrix} x^3 & -x^3 \\ 3x^2 & -3x^2 \end{vmatrix} = 0.$$

This does not violate Theorem 4.1.3 since $a_2(x) = x^2$ is zero at x = 0.

- (c) The functions $Y_1 = x^3$ and $Y_2 = x^2$ are solutions of $x^2y'' 4xy' + 6y = 0$. They are line independent since $W(x^3, x^2) = x^4 \neq 0$ for $-\infty < x < \infty$.
- (d) The function $y = x^3$ satisfies y(0) = 0 and y'(0) = 0.
- (e) Neither is the general solution on $(-\infty, \infty)$ since we form a general solution on an interval which

 $a_2(x) \neq 0$ for every x in the interval.

- 40. Since $e^{x-3} = e^{-3}e^x = (e^{-5}e^2)e^x = e^{-5}e^{x+2}$, we see that e^{x-3} is a constant multiple of e^{x+2} and set of functions is linearly dependent.
- 41. Since $0y_1 + 0y_2 + \cdots + 0y_k + 1y_{k+1} = 0$, the set of solutions is linearly dependent.
- 42. The set of solutions is linearly dependent. Suppose n of the solutions are linearly independent not, then the set of n + 1 solutions is linearly dependent). Without loss of generality, let this set y_1, y_2, \ldots, y_n . Then $y = c_1y_1 + c_2y_2 + \cdots + c_ny_n$ is the general solution of the *n*th-order difference equation and for some choice, $c_1^*, c_2^*, \ldots, c_n^*$, of the coefficients $y_{n+1} = c_1^*y_1 + c_2^*y_2 + \cdots + c_n^*y_n$. Then the set $y_1, y_2, \ldots, y_n, y_{n+1}$ is linearly dependent.

142

Exercises 4.2

Problems 1-8 we use reduction of order to find a second solution. In Problems 9-16 we use formula from the text.

Reduction of Order

1. Define $y = u(x)e^{2x}$ so

 $y' = 2ue^{2x} + u'e^{2x}$, $y'' = e^{2x}u'' + 4e^{2x}u' + 4e^{2x}u$, and $y'' - 4y' + 4y = e^{2x}u'' = 0$.

Therefore u'' = 0 and $u = c_1 x + c_2$. Taking $c_1 = 1$ and $c_2 = 0$ we see that a second solution is $y_2 = xe^{2x}$.

 $\therefore \text{ Define } y = u(x)xe^{-x} \text{ so}$

$$y' = (1-x)e^{-x}u + xe^{-x}u', \quad y'' = xe^{-x}u'' + 2(1-x)e^{-x}u' - (2-x)e^{-x}u.$$

and

$$y'' + 2y' + y = e^{-x}(xu'' + 2u') = 0$$
 or $u'' + \frac{2}{x}u' = 0.$

If w = u' we obtain the linear first-order equation $w' + \frac{2}{x}w = 0$ which has the integrating factor $e^{2\int dx/x} = x^2$. Now

$$\frac{d}{dx} \left[x^2 w \right] = 0 \quad \text{gives} \quad x^2 w = c.$$

Therefore $w = u' = c/x^2$ and $u = c_1/x$. A second solution is $y_2 = \frac{1}{x}xe^{-x} = e^{-x}$. Define $y = u(x)\cos 4x$ so

 $y' = -4u\sin 4x + u'\cos 4x, \quad y'' = u''\cos 4x - 8u'\sin 4x - 16u\cos 4x$

end.

2

$$y'' + 16y = (\cos 4x)u'' - 8(\sin 4x)u' = 0 \quad \text{or} \quad u'' - 8(\tan 4x)u' = 0.$$

If w = u' we obtain the linear first-order equation $w' - 8(\tan 4x)w = 0$ which has the integrating factor $e^{-8\int \tan 4x \, dx} = \cos^2 4x$. Now

$$\frac{d}{dx}\left[(\cos^2 4x)w\right] = 0 \quad \text{gives} \quad (\cos^2 4x)w = c.$$

Therefore $w = u' = c \sec^2 4x$ and $u = c_1 \tan 4x$. A second solution is $y_2 = \tan 4x \cos 4x = \sin 4x$. = 1 time $y = u(x) \sin 3x$ so

$$y' = 3u\cos 3x + u'\sin 3x, \quad y'' = u''\sin 3x + 6u'\cos 3x - 9u\sin 3x,$$

143

Exercises 4.2 Reduction of Order

and

$$y'' + 9y = (\sin 3x)u'' + 6(\cos 3x)u' = 0 \quad \text{or} \quad u'' + 6(\cot 3x)u' = 0.$$

If w = u' we obtain the linear first-order equation $w' + 6(\cot 3x)w = 0$ which has the integration factor $e^{6\int \cot 3x \, dx} = \sin^2 3x$. Now

$$\frac{d}{dx}[(\sin^2 3x)w] = 0 \quad \text{gives} \quad (\sin^2 3x)w = c$$

Therefore $w = u' = c \csc^2 3x$ and $u = c_1 \cot 3x$. A second solution is $y_2 = \cot 3x \sin 3x = \cos 3x$.

5. Define $y = u(x) \cosh x$ so

$$y' = u \sinh x + u' \cosh x, \quad y'' = u'' \cosh x + 2u' \sinh x + u \cosh x$$

and

$$y'' - y = (\cosh x)u'' + 2(\sinh x)u' = 0$$
 or $u'' + 2(\tanh x)u' = 0.$

If w = u' we obtain the linear first-order equation $w' + 2(\tanh x)w = 0$ which has the integration factor $e^{2\int \tanh x \, dx} = \cosh^2 x$. Now

$$\frac{d}{dx}\left[(\cosh^2 x)w\right] = 0 \quad \text{gives} \quad (\cosh^2 x)w = c.$$

Therefore $w = u' = c \operatorname{sech}^2 x$ and $u = c \tanh x$. A second solution is $y_2 = \tanh x \cosh x = \sinh x$.

6. Define $y = u(x)e^{5x}$ so

 $y' = 5e^{5x}u + e^{5x}u', \quad y'' = e^{5x}u'' + 10e^{5x}u' + 25e^{5x}u$

and

$$y'' - 25y = e^{5x}(u'' + 10u') = 0$$
 or $u'' + 10u' = 0$.

If w = u' we obtain the linear first-order equation w' + 10w = 0 which has the integrating factor $e^{10\int dx} = e^{10x}$. Now

$$\frac{d}{dx}\left[e^{10x}w\right] = 0 \quad \text{gives} \quad e^{10x}w = c.$$

Therefore $w = u' = ce^{-10x}$ and $u = c_1 e^{-10x}$. A second solution is $y_2 = e^{-10x} e^{5x} = e^{-5x}$. 7. Define $y = u(x)e^{2x/3}$ so

$$y' = \frac{2}{3}e^{2x/3}u - e^{2x/3}u', \quad y'' = e^{2x/3}u'' + \frac{4}{3}e^{2x/3}u' + \frac{4}{9}e^{2x/3}u$$

and

$$9y'' - 12y' + 4y = 9e^{2x/3}u'' = 0.$$

Therefore u'' = 0 and $u = c_1 x + c_2$. Taking $c_1 = 1$ and $c_2 = 0$ we see that a second solution $y_2 = xe^{2x/3}$.

8. Define $y = u(x)e^{x/3}$ so

$$y' = \frac{1}{3}e^{x/3}u + e^{x/3}u', \quad y'' = e^{x/3}u'' + \frac{2}{3}e^{x/3}u' + \frac{1}{9}e^{x/3}u'$$

-:::1

$$6y'' + y' - y = e^{x/3}(6u'' + 5u') = 0$$
 or $u'' + \frac{5}{6}u' = 0.$

If x = u' we obtain the linear first-order equation $w' + \frac{5}{6}w = 0$ which has the integrating factor $e^{\frac{5}{6}-6}\int dx = e^{5x/6}$. Now

$$\frac{d}{dx}\left[e^{5x/6}w\right] = 0 \quad \text{gives} \quad e^{5x/6}w = c.$$

Therefore $w = u' = ce^{-5x/6}$ and $u = c_1e^{-5x/6}$. A second solution is $y_2 = e^{-5x/6}e^{x/3} = e^{-x/2}$.

Following P(x) = -7/x we have

$$y_2 = x^4 \int \frac{e^{-\int (-7/x) \, dx}}{x^8} \, dx = x^4 \int \frac{1}{x} \, dx = x^4 \ln |x|.$$

 \therefore second solution is $y_2 = x^4 \ln |x|$.

II. Example P(x) = 2/x we have

$$y_2 = x^2 \int \frac{e^{-\int (2/x) \, dx}}{x^4} \, dx = x^2 \int x^{-6} \, dx = -\frac{1}{5} x^{-3}.$$

- \therefore second solution is $y_2 = x^{-3}$.
- II If entifying P(x) = 1/x we have

$$y_2 = \ln x \int \frac{e^{-\int dx/x}}{(\ln x)^2} \, dx = \ln x \int \frac{dx}{x(\ln x)^2} = \ln x \left(-\frac{1}{\ln x}\right) = -1.$$

A second solution is $y_2 = 1$.

 \square Elentifying P(x) = 0 we have

$$y_2 = x^{1/2} \ln x \int \frac{e^{-\int 0 \, dx}}{x(\ln x)^2} \, dx = x^{1/2} \ln x \left(-\frac{1}{\ln x}\right) = -x^{1/2}.$$

A second solution is $y_2 = x^{1/2}$.

11 Identifying P(x) = -1/x we have

$$y_{2} = x \sin(\ln x) \int \frac{e^{-\int -dx/x}}{x^{2} \sin^{2}(\ln x)} dx = x \sin(\ln x) \int \frac{x}{x^{2} \sin^{2}(\ln x)} dx$$
$$= x \sin(\ln x) \int \frac{\csc^{2}(\ln x)}{x} dx = [x \sin(\ln x)] [-\cot(\ln x)] = -x \cos(\ln x).$$

A second solution is $y_2 = x \cos(\ln x)$.

. - Lientifying P(x) = -3/x we have

$$y_2 = x^2 \cos(\ln x) \int \frac{e^{-\int -3 \, dx/x}}{x^4 \cos^2(\ln x)} \, dx = x^2 \cos(\ln x) \int \frac{x^3}{x^4 \cos^2(\ln x)} \, dx$$
$$= x^2 \cos(\ln x) \int \frac{\sec^2(\ln x)}{x} \, dx = x^2 \cos(\ln x) \tan(\ln x) = x^2 \sin(\ln x)$$

Exercises 4.2 Reduction of Order

A second solution is $y_2 = x^2 \sin(\ln x)$.

15. Identifying $P(x) = 2(1+x)/(1-2x-x^2)$ we have

$$y_{2} = (x+1) \int \frac{e^{-\int 2(1+x)dx/(1-2x-x^{2})}}{(x+1)^{2}} dx = (x+1) \int \frac{e^{\ln(1-2x-x^{2})}}{(x+1)^{2}} dx$$
$$= (x+1) \int \frac{1-2x-x^{2}}{(x+1)^{2}} dx = (x+1) \int \left[\frac{2}{(x+1)^{2}} - 1\right] dx$$
$$= (x+1) \left[-\frac{2}{x+1} - x\right] = -2 - x^{2} - x.$$

A second solution is $y_2 = x^2 + x + 2$.

16. Identifying $P(x) = -2x/(1-x^2)$ we have

$$y_2 = \int e^{-\int -2x \, dx/(1-x^2)} dx = \int e^{-\ln(1-x^2)} dx = \int \frac{1}{1-x^2} \, dx = \frac{1}{2} \ln \left| \frac{1+x}{1-x} \right|.$$

A second solution is $y_2 = \ln |(1+x)/(1-x)|$.

17. Define $y = u(x)e^{-2x}$ so

$$y' = -2ue^{-2x} + u'e^{-2x}, \quad y'' = u''e^{-2x} - 4u'e^{-2x} + 4ue^{-2x}$$

and

$$y'' - 4y = e^{-2x}u'' - 4e^{-2x}u' = 0$$
 or $u'' - 4u' = 0$.

If w = u' we obtain the linear first-order equation w' - 4w = 0 which has the integrating : $e^{-4\int dx} = e^{-4x}$. Now

$$\frac{d}{dx}[e^{-4x}w] = 0 \quad \text{gives} \quad e^{-4x}w = c$$

Therefore $w = u' = ce^{4x}$ and $u = c_1e^{4x}$. A second solution is $y_2 = e^{-2x}e^{4x} = e^{2x}$. We - observation that a particular solution is $y_p = -1/2$. The general solution is

$$y = c_1 e^{-2x} + c_2 e^{2x} - \frac{1}{2}$$

18. Define $y = u(x) \cdot 1$ so

$$y' = u', \quad y'' = u'' \quad \text{and} \quad y'' + y' = u'' + u' = 1.$$

If w = u' we obtain the linear first-order equation w' + w = 1 which has the integrating : $e^{\int dx} = e^x$. Now

$$\frac{d}{dx}[e^xw] = e^x$$
 gives $e^xw = e^x + c$.

Therefore $w = u' = 1 + ce^{-x}$ and $u = x + c_1e^{-x} + c_2$. The general solution is

$$y = u = x + c_1 e^{-x} + c_2.$$

146

19. Define $y = u(x)e^x$ so

$$y' = ue^x + u'e^x$$
, $y'' = u''e^x + 2u'e^x + ue^x$

and

$$y'' - 3y' + 2y = e^x u'' - e^x u' = 5e^{3x}.$$

If w = u' we obtain the linear first-order equation $w' - w = 5e^{2x}$ which has the integrating factor $e^{-\int dx} = e^{-x}$. Now

$$\frac{d}{dx}[e^{-x}w] = 5e^x$$
 gives $e^{-x}w = 5e^x + c_1$.

Therefore $w = u' = 5e^{2x} + c_1e^x$ and $u = \frac{5}{2}e^{2x} + c_1e^x + c_2$. The general solution is

$$y = ue^{x} = \frac{5}{2}e^{3x} + c_{1}e^{2x} + c_{2}e^{x}.$$

 \square . Define $y = u(x)e^x$ so

$$y' = ue^x + u'e^x$$
, $y'' = u''e^x + 2u'e^x + ue^x$

 and

$$y'' - 4y' + 3y = e^x u'' - e^x u' = x.$$

If w = u' we obtain the linear first-order equation $w' - 2w = xe^{-x}$ which has the integrating factor $e^{-\int 2dx} = e^{-2x}$. Now

$$\frac{d}{dx}[e^{-2x}w] = xe^{-3x} \quad \text{gives} \quad e^{-2x}w = -\frac{1}{3}xe^{-3x} - \frac{1}{9}e^{-3x} + c_1.$$

Therefore $w = u' = -\frac{1}{3}xe^{-x} - \frac{1}{9}e^{-x} + c_1e^{2x}$ and $u = \frac{1}{3}xe^{-x} + \frac{4}{9}e^{-x} + c_2e^{2x} + c_3$. The general solution is

$$y = ue^x = \frac{1}{3}x + \frac{4}{9} + c_2e^{3x} + c_3e^x.$$

1 a) For m_1 constant, let $y_1 = e^{m_1 x}$. Then $y'_1 = m_1 e^{m_1 x}$ and $y''_1 = m_1^2 e^{m_1 x}$. Substituting into the differential equation we obtain

$$ay_1'' + by_1' + cy_1 = am_1^2 e^{m_1 x} + bm_1 e^{m_1 x} + ce^{m_1 x}$$
$$= e^{m_1 x} (am_1^2 + bm_1 + c) = 0.$$

Thus, $y_1 = e^{m_1 x}$ will be a solution of the differential equation whenever $am_1^2 + bm_1 + c = 0$. Since a quadratic equation always has at least one real or complex root, the differential equation must have a solution of the form $y_1 = e^{m_1 x}$.

b). Write the differential equation in the form

$$y'' + \frac{b}{a}y' + \frac{c}{a}y = 0,$$

147

Exercises 4.2 Reduction of Order

and let $y_1 = e^{m_1 x}$ be a solution. Then a second solution is given by

$$y_{2} = e^{m_{1}x} \int \frac{e^{-bx/a}}{e^{2m_{1}x}} dx$$

= $e^{m_{1}x} \int e^{-(b/a+2m_{1})x} dx$
= $-\frac{1}{b/a+2m_{1}} e^{m_{1}x} e^{-(b/a+2m_{1})x}$ $(m_{1} \neq -b/2a)$
= $-\frac{1}{b/a+2m_{1}} e^{-(b/a+m_{1})x}.$

Thus, when $m_1 \neq -b/2a$, a second solution is given by $y_2 = e^{m_2 x}$ where $m_2 = -b/a - b/a$. When $m_1 = -b/2a$ a second solution is given by

$$y_2 = e^{m_1 x} \int dx = x e^{m_1 x}$$

(c) The functions

$$\sin x = \frac{1}{2i}(e^{ix} - e^{-ix}) \qquad \cos x = \frac{1}{2}(e^{ix} + e^{-ix})$$
$$\sinh x = \frac{1}{2}(e^{x} - e^{-x}) \qquad \cosh x = \frac{1}{2}(e^{x} + e^{-x})$$

are all expressible in terms of exponential functions.

22. We have $y'_1 = 1$ and $y''_1 = 0$, so $xy''_1 - xy'_1 + y_1 = 0 - x + x = 0$ and $y_1(x) = x$ is a solution of \therefore differential equation. Letting $y = u(x)y_1(x) = xu(x)$ we get

$$y' = xu'(x) + u(x)$$
 and $y'' = xu''(x) + 2u'(x)$.

Then $xy'' - xy' + y = x^2u'' + 2xu' - x^2u' - xu + xu = x^2u'' - (x^2 - 2x)u' = 0$. If we make : substitution w = u', the linear first-order differential equation becomes $x^2w' - (x^2 - x)w = 0$, while is separable:

$$\frac{dw}{dx} = \left(1 - \frac{1}{x}\right)w$$
$$\frac{dw}{w} = \left(1 - \frac{1}{x}\right)dx$$
$$\ln w = x - \ln x + c$$
$$w = c_1 \frac{e^x}{x}.$$

Then $u' = c_1 e^x / x$ and $u = c_1 \int e^x dx / x$. To integrate e^x / x we use the series representation for -

148

Thus, a second solution is

$$y_{2} = xu(x) = c_{1}x \int \frac{e^{x}}{x} dx$$

= $c_{1}x \int \frac{1}{x} \left(1 + x + \frac{1}{2!}x^{2} + \frac{1}{3!}x^{3} + \cdots \right) dx$
= $c_{1}x \int \left(\frac{1}{x} + 1 + \frac{1}{2!}x + \frac{1}{3!}x^{2} + \cdots \right) dx$
= $c_{1}x \left(\ln x + x + \frac{1}{2(2!)}x^{2} + \frac{1}{3(3!)}x^{3} + \cdots \right)$
= $c_{1} \left(x \ln x + x^{2} + \frac{1}{2(2!)}x^{3} + \frac{1}{3(3!)}x^{4} + \cdots \right).$

An interval of definition is probably $(0,\infty)$ because of the $\ln x$ term.

 \square a We have $y' = y'' = e^x$, so

$$xy'' - (x+10)y' + 10y = xe^x - (x+10)e^x + 10e^x = 0,$$

and $y = e^x$ is a solution of the differential equation.

 $b \in By(5)$ a second solution is

$$y_{2} = y_{1} \int \frac{e^{-\int P(x) dx}}{y_{1}^{2}} dx = e^{x} \int \frac{e^{\int \frac{x+10}{x} dx}}{e^{2x}} dx = e^{x} \int \frac{e^{\int (1+10/x) dx}}{e^{2x}} dx$$
$$= e^{x} \int \frac{e^{x+\ln x^{10}}}{e^{2x}} dx = e^{x} \int x^{10} e^{-x} dx$$
$$= e^{x} (-3,628,800 - 3,628.800x - 1,814,400x^{2} - 604,800x^{3} - 151,200x^{4}$$
$$- 30,240x^{5} - 5,040x^{6} - 720x^{7} - 90x^{8} - 10x^{9} - x^{10})e^{-x}$$
$$= -3,628,800 - 3,628,800x - 1,814,400x^{2} - 604,800x^{3} - 151,200x^{4}$$
$$- 30,240x^{5} - 5,040x^{6} - 720x^{7} - 90x^{8} - 10x^{9} - x^{10}.$$

c) By Corollary (A) of Theorem 4.1.2, $-\frac{1}{10!}y_2 = \sum_{n=0}^{10} \frac{1}{n!}x^n$ is a solution.

Exercises 4.3 Homogeneous Linear Equations with Constant Coefficients

Exercises 4.3

Homogeneous Linear Equations with Constant Coefficien:

- 1. From $4m^2 + m = 0$ we obtain m = 0 and m = -1/4 so that $y = c_1 + c_2 e^{-x/4}$.
- 2. From $m^2 36 = 0$ we obtain m = 6 and m = -6 so that $y = c_1 e^{6x} + c_2 e^{-6x}$.
- 3. From $m^2 m 6 = 0$ we obtain m = 3 and m = -2 so that $y = c_1 e^{3x} + c_2 e^{-2x}$.
- 4. From $m^2 3m + 2 = 0$ we obtain m = 1 and m = 2 so that $y = c_1 e^x + c_2 e^{2x}$.
- 5. From $m^2 + 8m + 16 = 0$ we obtain m = -4 and m = -4 so that $y = c_1 e^{-4x} + c_2 x e^{-4x}$.
- 6. From $m^2 10m + 25 = 0$ we obtain m = 5 and m = 5 so that $y = c_1 e^{5x} + c_2 x e^{5x}$.
- 7. From $12m^2 5m 2 = 0$ we obtain m = -1/4 and m = 2/3 so that $y = c_1 e^{-x/4} + c_2 e^{2x/3}$.
- 5. From $m^2 + 4m 1 = 0$ we obtain $m = -2 \pm \sqrt{5}$ so that $y = c_1 e^{(-2 \pm \sqrt{5})x} + c_2 e^{(-2 \sqrt{5})x}$.
- 9. From $m^2 + 9 = 0$ we obtain m = 3i and m = -3i so that $y = c_1 \cos 3x + c_2 \sin 3x$.
- 10. From $3m^2 + 1 = 0$ we obtain $m = i/\sqrt{3}$ and $m = -i/\sqrt{3}$ so that $y = c_1 \cos(x/\sqrt{3}) + c_2(\sin x/\sqrt{3})$
- 11. From $m^2 4m + 5 = 0$ we obtain $m = 2 \pm i$ so that $y = e^{2x}(c_1 \cos x + c_2 \sin x)$.
- 12. From $2m^2 + 2m + 1 = 0$ we obtain $m = -1/2 \pm i/2$ so that

$$y = e^{-x/2}[c_1\cos(x/2) + c_2\sin(x/2)].$$

13. From $3m^2 + 2m + 1 = 0$ we obtain $m = -1/3 \pm \sqrt{2}i/3$ so that

$$y = e^{-x/3} [c_1 \cos(\sqrt{2x/3}) + c_2 \sin(\sqrt{2x/3})].$$

14. From $2m^2 - 3m + 4 = 0$ we obtain $m = 3/4 \pm \sqrt{23} i/4$ so that $y = e^{3x/4} [c_1 \cos(\sqrt{23}x/4) + c_2 \sin(\sqrt{23}x/4)].$

15. From $m^3 - 4m^2 - 5m = 0$ we obtain m = 0, m = 5, and m = -1 so that $u = c_1 + c_2 e^{5x} + c_3 e^{-x}$.

16. From $m^3 - 1 = 0$ we obtain m = 1 and $m = -1/2 \pm \sqrt{3}i/2$ so that $y = c_1 e^x + e^{-x/2} [c_2 \cos(\sqrt{3}x/2) + c_3 \sin(\sqrt{3}x/2)]$

17. From $m^3 - 5m^2 + 3m + 9 = 0$ we obtain m = -1, m = 3, and m = 3 so that $y = c_1 e^{-x} + c_2 e^{3x} + c_3 x e^{3x}$.

15. From $m^3 + 3m^2 - 4m - 12 = 0$ we obtain m = -2, m = 2, and m = -3 so that $y = c_1 e^{-2x} + c_2 e^{2x} + c_3 e^{-3x}$.

150

13. From $m^3 + m^2 - 2 = 0$ we obtain m = 1 and $m = -1 \pm i$ so that $u = c_1 e^t + e^{-t} (c_2 \cos t + c_3 \sin t).$ 21. From $m^3 - m^2 - 4 = 0$ we obtain m = 2 and $m = -1/2 \pm \sqrt{7} i/2$ so that $x = c_1 e^{2t} + e^{-t/2} [c_2 \cos(\sqrt{7}t/2) + c_3 \sin(\sqrt{7}t/2)].$

11. From $m^3 + 3m^2 + 3m + 1 = 0$ we obtain m = -1, m = -1, and m = -1 so that

$$y = c_1 e^{-x} + c_2 x e^{-x} + c_3 x^2 e^{-x}$$

From $m^3 - 6m^2 + 12m - 8 = 0$ we obtain m = 2, m = 2, and m = 2 so that $y = c_1 e^{2x} + c_2 x e^{2x} + c_3 x^2 e^{2x}$.

23. From $m^4 + m^3 + m^2 = 0$ we obtain m = 0, m = 0, and $m = -1/2 \pm \sqrt{3}i/2$ so that $y = c_1 + c_2 x + e^{-x/2} [c_3 \cos(\sqrt{3}x/2) + c_4 \sin(\sqrt{3}x/2)].$

24. From $m^4 - 2m^2 + 1 = 0$ we obtain m = 1, m = 1, m = -1, and m = -1 so that $y = c_1 e^x + c_2 x e^x + c_3 e^{-x} + c_4 x e^{-x}$.

From $16m^4 + 24m^2 + 9 = 0$ we obtain $m = \pm\sqrt{3}i/2$ and $m = \pm\sqrt{3}i/2$ so that $y = c_1 \cos(\sqrt{3}x/2) + c_2 \sin(\sqrt{3}x/2) + c_3 x \cos(\sqrt{3}x/2) + c_4 x \sin(\sqrt{3}x/2).$

From $m^4 - 7m^2 - 18 = 0$ we obtain m = 3, m = -3, and $m = \pm \sqrt{2}i$ so that $y = c_1 e^{3x} + c_2 e^{-3x} + c_3 \cos \sqrt{2}x + c_4 \sin \sqrt{2}x.$

From $m^5 + 5m^4 - 2m^3 - 10m^2 + m + 5 = 0$ we obtain m = -1, m = -1, m = 1, and m = 1, and m = -5 so that

$$u = c_1 e^{-r} + c_2 r e^{-r} + c_3 e^r + c_4 r e^r + c_5 e^{-5r}.$$

So From $2m^5 - 7m^4 + 12m^3 + 8m^2 = 0$ we obtain m = 0, m = 0, m = -1/2, and $m = 2 \pm 2i$ so that $x = c_1 + c_2s + c_3e^{-s/2} + e^{2s}(c_4\cos 2s + c_5\sin 2s).$

- From $m^2 + 16 = 0$ we obtain $m = \pm 4i$ so that $y = c_1 \cos 4x + c_2 \sin 4x$. If y(0) = 2 and y'(0) = -2then $c_1 = 2$, $c_2 = -1/2$, and $y = 2 \cos 4x - \frac{1}{2} \sin 4x$.
- From $m^2 + 1 = 0$ we obtain $m = \pm i$ so that $y = c_1 \cos \theta + c_2 \sin \theta$. If $y(\pi/3) = 0$ and $y'(\pi/3) = 2$ then

$$\frac{1}{2}c_1 + \frac{\sqrt{3}}{2}c_2 = 0$$
$$-\frac{\sqrt{3}}{2}c_1 + \frac{1}{2}c_2 = 2,$$

151

Exercises 4.3 Homogeneous Linear Equations with Constant Coefficients

so $c_1 = -\sqrt{3}$, $c_2 = 1$, and $y = -\sqrt{3} \cos \theta + \sin \theta$.

- **31.** From $m^2 4m 5 = 0$ we obtain m = -1 and m = 5, so that $y = c_1 e^{-t} + c_2 e^{5t}$. If y(1) = and y'(1) = 2, then $c_1 e^{-1} + c_2 e^5 = 0$, $-c_1 e^{-1} + 5c_2 e^5 = 2$, so $c_1 = -e/3$, $c_2 = e^{-5}/3$. $y = -\frac{1}{3}e^{1-t} + \frac{1}{3}e^{5t-5}$.
- **32.** From $4m^2 4m 3 = 0$ we obtain m = -1/2 and m = 3/2 so that $y = c_1 e^{-x/2} + c_2 e^{3x/2}$. If y(0 = and y'(0) = 5 then $c_1 + c_2 = 1$, $-\frac{1}{2}c_1 + \frac{3}{2}c_2 = 5$, so $c_1 = -7/4$, $c_2 = 11/4$, and $y = -\frac{7}{4}e^{-x/2} + \frac{11}{4}e^{3x/2}$.
- **33.** From $m^2 + m + 2 = 0$ we obtain $m = -1/2 \pm \sqrt{7} i/2$ so that $y = e^{-x/2} [c_1 \cos(\sqrt{7} x/2) + c_2 \sin(\sqrt{7} x/2) +$
- 34. From $m^2 2m + 1 = 0$ we obtain m = 1 and m = 1 so that $y = c_1 e^x + c_2 x e^x$. If y(0) = 5y'(0) = 10 then $c_1 = 5$, $c_1 + c_2 = 10$ so $c_1 = 5$, $c_2 = 5$, and $y = 5e^x + 5xe^x$.
- **35.** From $m^3 + 12m^2 + 36m = 0$ we obtain m = 0, m = -6, and m = -6 so that $y = c_1 + c_2 e^{-6x} + c_3 x e^{-6x}$. If y(0) = 0, y'(0) = 1, and y''(0) = -7 then

$$c_1 + c_2 = 0$$
, $-6c_2 + c_3 = 1$, $36c_2 - 12c_3 = -7$,

so $c_1 = 5/36$, $c_2 = -5/36$, $c_3 = 1/6$, and $y = \frac{5}{36} - \frac{5}{36}e^{-6x} + \frac{1}{6}xe^{-6x}$.

36. From $m^3 + 2m^2 - 5m - 6 = 0$ we obtain m = -1, m = 2, and m = -3 so that

$$y = c_1 e^{-x} + c_2 e^{2x} + c_3 e^{-3x}$$

If y(0) = 0, y'(0) = 0, and y''(0) = 1 then

$$c_1 + c_2 + c_3 = 0$$
, $-c_1 + 2c_2 - 3c_3 = 0$, $c_1 + 4c_2 + 9c_3 = 1$,

so $c_1 = -1/6$, $c_2 = 1/15$, $c_3 = 1/10$, and

$$y = -\frac{1}{6}e^{-x} + \frac{1}{15}e^{2x} + \frac{1}{10}e^{-3x}.$$

- 37. From $m^2 10m + 25 = 0$ we obtain m = 5 and m = 5 so that $y = c_1 e^{5x} + c_2 x e^{5x}$. If y(0) = 1y(1) = 0 then $c_1 = 1$, $c_1 e^5 + c_2 e^5 = 0$, so $c_1 = 1$, $c_2 = -1$, and $y = e^{5x} - x e^{5x}$.
- 38. From $m^2 + 4 = 0$ we obtain $m = \pm 2i$ so that $y = c_1 \cos 2x + c_2 \sin 2x$. If y(0) = 0 and $y(\pi =$ then $c_1 = 0$ and $y = c_2 \sin 2x$.
- 39. From $m^2 + 1 = 0$ we obtain $m = \pm i$ so that $y = c_1 \cos x + c_2 \sin x$ and $y' = -c_1 \sin x + c_2 \cos x$ From $y'(0) = c_1(0) + c_2(1) = c_2 = 0$ and $y'(\pi/2) = -c_1(1) = 0$ we find $c_1 = c_2 = 0$. A solution the boundary-value problem is y = 0.
- 40. From $m^2 2m + 2 = 0$ we obtain $m = 1 \pm i$ so that $y = e^x(c_1 \cos x + c_2 \sin x)$. If y(0) = 1 $y(\pi) = 1$ then $c_1 = 1$ and $y(\pi) = e^{\pi} \cos \pi = -e^{\pi}$. Since $-e^{\pi} \neq 1$, the boundary-value problem no solution.

- 41. The auxiliary equation is $m^2 3 = 0$ which has roots $-\sqrt{3}$ and $\sqrt{3}$. By (10) the general solution is $y = c_1 e^{\sqrt{3}x} + c_2 e^{-\sqrt{3}x}$. By (11) the general solution is $y = c_1 \cosh \sqrt{3}x + c_2 \sinh \sqrt{3}x$. For $y = c_1 e^{\sqrt{3}x} + c_2 e^{-\sqrt{3}x}$ the initial conditions imply $c_1 + c_2 = 1$, $\sqrt{3}c_1 - \sqrt{3}c_2 = 5$. Solving for c_1 and c_2 we find $c_1 = \frac{1}{2}(1 + 5\sqrt{3})$ and $c_2 = \frac{1}{2}(1 - 5\sqrt{3})$ so $y = \frac{1}{2}(1 + 5\sqrt{3})e^{\sqrt{3}x} + \frac{1}{2}(1 - 5\sqrt{3})e^{-\sqrt{3}x}$. For $y = c_1 \cosh \sqrt{3}x + c_2 \sinh \sqrt{3}x$ the initial conditions imply $c_1 = 1$, $\sqrt{3}c_2 = 5$. Solving for c_1 and c_2 we find $c_1 = 1$ and $c_2 = \frac{5}{3}\sqrt{3}$ so $y = \cosh \sqrt{3}x + \frac{5}{3}\sqrt{3}\sinh \sqrt{3}x$.
- 42. The auxiliary equation is $m^2 1 = 0$ which has roots -1 and 1. By (10) the general solution is $y = c_1 e^x + c_2 e^{-x}$. By (11) the general solution is $y = c_1 \cosh x + c_2 \sinh x$. For $y = c_1 e^x + c_2 e^{-x}$ the boundary conditions imply $c_1 + c_2 = 1$, $c_1 e c_2 e^{-1} = 0$. Solving for c_1 and c_2 we find $c_1 = 1/(1+e^2)$ and $c_2 = e^2/(1+e^2)$ so $y = e^x/(1+e^2) + e^2 e^{-x}/(1+e^2)$. For $y = c_1 \cosh x + c_2 \sinh x$ the boundary conditions imply $c_1 = 1$. $c_2 = -\tanh 1$, so $y = \cosh x (\tanh 1) \sinh x$.
- 43. The auxiliary equation should have two positive roots, so that the solution has the form $y = c_1 e^{k_1 x} + c_2 e^{k_2 x}$. Thus, the differential equation is (f).
- \pm : The auxiliary equation should have one positive and one negative root, so that the solution has the form $y = c_1 e^{k_1 x} + c_2 e^{-k_2 x}$. Thus, the differential equation is (a).
- 45. The auxiliary equation should have a pair of complex roots $\alpha \pm \beta i$ where $\alpha < 0$, so that the solution has the form $e^{\alpha x}(c_1 \cos \beta x + c_2 \sin \beta x)$. Thus, the differential equation is (e).
- ±:. The auxiliary equation should have a repeated negative root, so that the solution has the form $y = c_1 e^{-x} + c_2 x e^{-x}$. Thus, the differential equation is (c).
- \pm The differential equation should have the form $y'' + k^2y = 0$ where k = 1 so that the period of the solution is 2π . Thus, the differential equation is (d).
- \pm . The differential equation should have the form $y'' + k^2y = 0$ where k = 2 so that the period of the solution is π . Thus, the differential equation is (b).
- Since $(m-4)(m+5)^2 = m^3 + 6m^2 15m 100$ the differential equation is y''' + 6y'' 15y' 100y = 0. The differential equation is not unique since any constant multiple of the left-hand side of the differential equation would lead to the auxiliary roots.
- **II.** A third root must be $m_3 = 3 i$ and the auxiliary equation is

$$\left(m+\frac{1}{2}\right)\left[m-(3+i)\right]\left[m-(3-i)\right] = \left(m+\frac{1}{2}\right)\left(m^2-6x+10\right) = m^3 - \frac{11}{2}m^2 + 7m + 5k^2$$

The differential equation is

$$y''' - \frac{11}{2}y'' + 7y' + 5y = 0.$$

11. From the solution $y_1 = e^{-4x} \cos x$ we conclude that $m_1 = -4 + i$ and $m_2 = -4 - i$ are roots of the auxiliary equation. Hence another solution must be $y_2 = e^{-4x} \sin x$. Now dividing the polynomial

153

Exercises 4.3 Homogeneous Linear Equations with Constant Coefficients

 $m^3 + 6m^2 + m - 34$ by $[m - (-4 + i)][m - (-4 - i)] = m^2 + 8m + 17$ gives m - 2. Therefore $m_{\delta} = m^2 + 6m^2 + m - 34$ by $[m - (-4 + i)][m - (-4 - i)] = m^2 + 8m + 17$ gives m - 2. Therefore $m_{\delta} = m^2 + 6m^2 + m - 34$ by $[m - (-4 + i)][m - (-4 - i)] = m^2 + 8m + 17$ gives m - 2. Therefore $m_{\delta} = m^2 + 8m + 17$ gives m - 2.

$$y = c_1 e^{-4x} \cos x + c_2 e^{-4x} \sin x + c_3 e^{2x}.$$

52. Factoring the difference of two squares we obtain

$$m^4 + 1 = (m^2 + 1)^2 - 2m^2 = (m^2 + 1 - \sqrt{2}m)(m^2 + 1 + \sqrt{2}m) = 0.$$

Using the quadratic formula on each factor we get $m = \pm \sqrt{2}/2 \pm \sqrt{2}i/2$. The solution of differential equation is

$$y(x) = e^{\sqrt{2}x/2} \left(c_1 \cos \frac{\sqrt{2}}{2} x + c_2 \sin \frac{\sqrt{2}}{2} x \right) + e^{-\sqrt{2}x/2} \left(c_3 \cos \frac{\sqrt{2}}{2} x + c_4 \sin \frac{\sqrt{2}}{2} x \right)$$

53. Using the definition of $\sinh x$ and the formula for the cosine of the sum of two angles, we have

$$y = \sinh x - 2\cos(x + \pi/6)$$

= $\frac{1}{2}e^x - \frac{1}{2}e^{-x} - 2\left[(\cos x)\left(\cos\frac{\pi}{6}\right) - (\sin x)\left(\sin\frac{\pi}{6}\right)\right]$
= $\frac{1}{2}e^x - \frac{1}{2}e^{-x} - 2\left(\frac{\sqrt{3}}{2}\cos x - \frac{1}{2}\sin x\right)$
= $\frac{1}{2}e^x - \frac{1}{2}e^{-x} - \sqrt{3}\cos x + \sin x.$

This form of the solution can be obtained from the general solution $y = c_1 e^x + c_2 e^{-x} + c_3 c - c_4 \sin x$ by choosing $c_1 = \frac{1}{2}$, $c_2 = -\frac{1}{2}$, $c_3 = -\sqrt{3}$, and $c_4 = 1$.

54. The auxiliary equation is $m^2 + \alpha = 0$ and we consider three cases where $\lambda = 0$, $\lambda = \alpha^2 > 1$ $\lambda = -\alpha^2 < 0$:

Case I When $\alpha = 0$ the general solution of the differential equation is $y = c_1 + c_2 x$. The bounconditions imply $0 = y(0) = c_1$ and $0 = y(\pi/2) = c_2 \pi/2$, so that $c_1 = c_2 = 0$ and the proposesses only the trivial solution.

Case II When $\lambda = -\alpha^2 < 0$ the general solution of the differential equation is $y = c_1$ $c_2 e^{-\alpha x}$, or alternatively, $y = c_1 \cosh \alpha x + c_2 \sinh \alpha x$. Again, y(0) = 0 implies $c_1 = 0 < y = c_2 \sinh \alpha x$. The second boundary condition implies $0 = y(\pi/2) = c_2 \sinh \alpha \pi/2$ or $c_2 =$ this case also, the problem possesses only the trivial solution.

Case III When $\lambda = \alpha^2 > 0$ the general solution of the differential equation is $y = c_1 \cos c_2 \sin \alpha x$. In this case also, y(0) = 0 yields $c_1 = 0$, so that $y = c_2 \sin \alpha x$. The second box, condition implies $0 = c_2 \sin \alpha \pi/2$. When $\alpha \pi/2$ is an integer multiple of π , that is, when $\alpha = c_1 \cos \alpha x$ and $\alpha = c_2 \sin \alpha \pi/2$. When $\alpha \pi/2$ is an integer multiple of π , that is, when $\alpha = c_2 \sin \alpha x$ and $\beta = c_2 \sin \alpha \pi/2$. When $\alpha \pi/2$ is an integer multiple of π , that is, when $\alpha = c_2 \sin \alpha x$ and $\gamma = c_2 \sin \alpha x$. The second box condition implies $0 = c_2 \sin \alpha \pi/2$. When $\alpha \pi/2$ is an integer multiple of π , that is, when $\alpha = c_2 \sin \alpha x$ and $\gamma = c_2 \sin \alpha x$. The second box box condition implies $0 = c_2 \sin \alpha \pi/2$. When $\alpha \pi/2$ is an integer multiple of π , that is, when $\alpha = c_2 \sin \alpha x$ and $\gamma = c_2 \sin \alpha x$.

154

. If the other hand, when α is not an even integer, the boundary-value problem will have only the trivial solution.

15 Using a CAS to solve the auxiliary equation $m^3 - 6m^2 + 2m + 1$ we find $m_1 = -0.270534$, $m_1 = 0.658675$, and $m_3 = 5.61186$. The general solution is

$$y = c_1 e^{-0.270534x} + c_2 e^{0.658675x} + c_3 e^{5.61186x}.$$

Te Using a CAS to solve the auxiliary equation $6.11m^3 + 8.59m^2 + 7.93m + 0.778 = 0$ we find $m_1 = -0.110241, m_2 = -0.647826 + 0.857532i$, and $m_3 = -0.647826 - 0.857532i$. The general solution is

$$y = c_1 e^{-0.110241x} + e^{-0.647826x} (c_2 \cos 0.857532x + c_3 \sin 0.857532x).$$

To Using a CAS to solve the auxiliary equation $3.15m^4 - 5.34m^2 + 6.33m - 2.03 = 0$ we find $m_1 = -1.74806, m_2 = 0.501219, m_3 = 0.62342 + 0.588965i$, and $m_4 = 0.62342 - 0.588965i$. The general solution is

$$y = c_1 e^{-1.74806x} + c_2 e^{0.501219x} + e^{0.62342x} (c_3 \cos 0.588965x + c_4 \sin 0.588965x).$$

15. Using a CAS to solve the auxiliary equation $m^4 + 2m^2 - m + 2 = 0$ we find $m_1 = 1/2 + \sqrt{3}i/2$, $m_2 = 1/2 - \sqrt{3}i/2$, $m_3 = -1/2 + \sqrt{7}i/2$, and $m_4 = -1/2 - \sqrt{7}i/2$. The general solution is

$$y = e^{x/2} \left(c_1 \cos \frac{\sqrt{3}}{2} x + c_2 \sin \frac{\sqrt{3}}{2} x \right) + e^{-x/2} \left(c_3 \cos \frac{\sqrt{7}}{2} x + c_4 \sin \frac{\sqrt{7}}{2} x \right).$$

From $2m^4 + 3m^3 - 16m^2 + 15m - 4 = 0$ we obtain m = -4, $m = \frac{1}{2}$, m = 1, and m = 1, so that $y = c_1 e^{-4x} + c_2 e^{x/2} + c_3 e^x + c_4 x e^x$. If y(0) = -2, y'(0) = 6, y''(0) = 3, and $y'''(0) = \frac{1}{2}$, then

$$c_1 + c_2 + c_3 = -2$$
$$-4c_1 + \frac{1}{2}c_2 + c_3 + c_4 = 6$$
$$16c_1 + \frac{1}{4}c_2 + c_3 + 2c_4 = 3$$
$$-64c_1 + \frac{1}{8}c_2 + c_3 + 3c_4 = \frac{1}{2},$$
so $c_1 = -\frac{4}{75}$, $c_2 = -\frac{116}{3}$, $c_3 = \frac{918}{25}$, $c_4 = -\frac{58}{5}$, and

$$c_2 = -\frac{110}{3}$$
, $c_3 = \frac{910}{25}$, $c_4 = -\frac{30}{5}$, and
 $y = -\frac{4}{75}e^{-4x} - \frac{116}{3}e^{x/2} + \frac{918}{25}e^x - \frac{58}{5}xe^x$.

10. From $m^4 - 3m^3 + 3m^2 - m = 0$ we obtain m = 0, m = 1, m = 1, and m = 1 so that $y = c_1 + c_2 e^x + c_3 x e^x + c_4 x^2 e^x$. If y(0) = 0, y'(0) = 0, y''(0) = 1, and y'''(0) = 1 then

$$c_1 + c_2 = 0$$
, $c_2 + c_3 = 0$, $c_2 + 2c_3 + 2c_4 = 1$, $c_2 + 3c_3 + 6c_4 = 1$,

155

Exercises 4.3 Homogeneous Linear Equations with Constant Coefficients

so $c_1 = 2$, $c_2 = -2$, $c_3 = 2$, $c_4 = -1/2$, and

$$y = 2 - 2e^x + 2xe^x - \frac{1}{2}x^2e^x.$$

Exercises 4.4 Undetermined Coefficients - Superposition Approach

1. From $m^2 + 3m + 2 = 0$ we find $m_1 = -1$ and $m_2 = -2$. Then $y_c = c_1 e^{-x} + c_2 e^{-2x}$ and we assumption $y_p = A$. Substituting into the differential equation we obtain 2A = 6. Then A = 3, $y_p = 3$ and

$$y = c_1 e^{-x} + c_2 e^{-2x} + 3.$$

2. From $4m^2 + 9 = 0$ we find $m_1 = -\frac{3}{2}i$ and $m_2 = \frac{3}{2}i$. Then $y_c = c_1 \cos \frac{3}{2}x + c_2 \sin \frac{3}{2}x$ and we assume $y_p = A$. Substituting into the differential equation we obtain 9A = 15. Then $A = \frac{5}{3}$, $y_p = \frac{5}{3}$ and

$$y = c_1 \cos \frac{3}{2}x + c_2 \sin \frac{3}{2}x + \frac{5}{3}.$$

3. From $m^2 - 10m + 25 = 0$ we find $m_1 = m_2 = 5$. Then $y_c = c_1 e^{5x} + c_2 x e^{5x}$ and we assume $y_p = Ax + B$. Substituting into the differential equation we obtain 25A = 30 and -10A + 25B = 0. Then $A = \frac{6}{5}$, $B = \frac{3}{5}$, $y_p = \frac{6}{5}x + \frac{3}{5}$, and

$$y = c_1 e^{5x} + c_2 x e^{5x} + \frac{6}{5} x + \frac{3}{5}.$$

4. From $m^2 + m - 6 = 0$ we find $m_1 = -3$ and $m_2 = 2$. Then $y_c = c_1 e^{-3x} + c_2 e^{2x}$ and we assume $y_p = Ax + B$. Substituting into the differential equation we obtain -6A = 2 and A - 6B = 0. Then $A = -\frac{1}{3}$, $B = -\frac{1}{18}$, $y_p = -\frac{1}{3}x - \frac{1}{18}$, and

$$y = c_1 e^{-3x} + c_2 e^{2x} - \frac{1}{3}x - \frac{1}{18}$$

5. From $\frac{1}{4}m^2 + m + 1 = 0$ we find $m_1 = m_2 = -2$. Then $y_c = c_1e^{-2x} + c_2xe^{-2x}$ and we assume $y_p = Ax^2 + Bx + C$. Substituting into the differential equation we obtain A = 1, 2A + B = -1, and $\frac{1}{2}A + B + C = 0$. Then A = 1, B = -4, $C = \frac{7}{2}$, $y_p = x^2 - 4x + \frac{7}{2}$, and

$$y = c_1 e^{-2x} + c_2 x e^{-2x} + x^2 - 4x + \frac{7}{2}.$$

6. From $m^2 - 8m + 20 = 0$ we find $m_1 = 4 + 2i$ and $m_2 = 4 - 2i$. Then $y_c = e^{4x}(c_1 \cos 2x + c_2 \sin 2x)$ and we assume $y_p = Ax^2 + Bx + C + (Dx + E)e^x$. Substituting into the differential equation π

156

Dtain

$$2A - 8B + 20C = 0$$

 $-6D + 13E = 0$
 $-16A + 20B = 0$
 $13D = -26$
 $20A = 100.$

Then
$$A = 5$$
, $B = 4$, $C = \frac{11}{10}$, $D = -2$, $E = -\frac{12}{13}$, $y_p = 5x^2 + 4x + \frac{11}{10} + \left(-2x - \frac{12}{13}\right)e^x$ and
 $y = e^{4x}(c_1\cos 2x + c_2\sin 2x) + 5x^2 + 4x + \frac{11}{10} + \left(-2x - \frac{12}{13}\right)e^x$.

From $m^2 + 3 = 0$ we find $m_1 = \sqrt{3}i$ and $m_2 = -\sqrt{3}i$. Then $y_c = c_1 \cos \sqrt{3}x + c_2 \sin \sqrt{3}x$ and we assume $y_p = (Ax^2 + Bx + C)e^{3x}$. Substituting into the differential equation we obtain 2A + 6B + 12C = 0, 12A + 12B = 0, and 12A = -48. Then A = -4, B = 4, $C = -\frac{4}{3}$, $y_p = \left(-4x^2 + 4x - \frac{4}{3}\right)e^{3x}$ and

$$y = c_1 \cos \sqrt{3} x + c_2 \sin \sqrt{3} x + \left(-4x^2 + 4x - \frac{4}{3}\right) e^{3x}.$$

5. From $4m^2 - 4m - 3 = 0$ we find $m_1 = \frac{3}{2}$ and $m_2 = -\frac{1}{2}$. Then $y_c = c_1 e^{3x/2} + c_2 e^{-x/2}$ and we assume $y_p = A \cos 2x + B \sin 2x$. Substituting into the differential equation we obtain -19 - 8B = 1 and 8A - 19B = 0. Then $A = -\frac{19}{425}$, $B = -\frac{8}{425}$, $y_p = -\frac{19}{425} \cos 2x - \frac{8}{425} \sin 2x$, and

$$y = c_1 e^{3x/2} + c_2 e^{-x/2} - \frac{19}{425} \cos 2x - \frac{8}{425} \sin 2x.$$

- 9. From $m^2 m = 0$ we find $m_1 = 1$ and $m_2 = 0$. Then $y_c = c_1 e^x + c_2$ and we assume $y_p = Ax$. Substituting into the differential equation we obtain -A = -3. Then A = 3, $y_p = 3x$ and $y = c_1 e^x + c_2 + 3x$.
- 10. From $m^2 + 2m = 0$ we find $m_1 = -2$ and $m_2 = 0$. Then $y_c = c_1 e^{-2x} + c_2$ and we assume $y_p = Ax^2 + Bx + Cxe^{-2x}$. Substituting into the differential equation we obtain 2A + 2B = 5, 4A = 2, and -2C = -1. Then $A = \frac{1}{2}$, B = 2, $C = \frac{1}{2}$, $y_p = \frac{1}{2}x^2 + 2x + \frac{1}{2}xe^{-2x}$, and

$$y = c_1 e^{-2x} + c_2 + \frac{1}{2}x^2 + 2x + \frac{1}{2}xe^{-2x}.$$

11. From $m^2 - m + \frac{1}{4} = 0$ we find $m_1 = m_2 = \frac{1}{2}$. Then $y_c = c_1 e^{x/2} + c_2 x e^{x/2}$ and we assume $y_p = A + Bx^2 e^{x/2}$. Substituting into the differential equation we obtain $\frac{1}{4}A = 3$ and 2B = 1. Then $A = 12, B = \frac{1}{2}, y_p = 12 + \frac{1}{2}x^2 e^{x/2}$, and

$$y = c_1 e^{x/2} + c_2 x e^{x/2} + 12 + \frac{1}{2} x^2 e^{x/2}$$

157

Exercises 4.4 Undetermined Coefficients – Superposition Approach

12. From $m^2 - 16 = 0$ we find $m_1 = 4$ and $m_2 = -4$. Then $y_c = c_1 e^{4x} + c_2 e^{-4x}$ and we assume $y_p = Axe^{4x}$. Substituting into the differential equation we obtain 8A = 2. Then $A = \frac{1}{4}$, $y_p = \frac{1}{4}$, and

$$y = c_1 e^{4x} + c_2 e^{-4x} + \frac{1}{4} x e^{4x}.$$

13. From $m^2 + 4 = 0$ we find $m_1 = 2i$ and $m_2 = -2i$. Then $y_c = c_1 \cos 2x + c_2 \sin 2x$ and we assume $y_p = Ax \cos 2x + Bx \sin 2x$. Substituting into the differential equation we obtain 4B = 0-4A = 3. Then $A = -\frac{3}{4}$, B = 0, $y_p = -\frac{3}{4}x \cos 2x$, and

$$y = c_1 \cos 2x + c_2 \sin 2x - \frac{3}{4}x \cos 2x.$$

14. From $m^2 - 4 = 0$ we find $m_1 = 2$ and $m_2 = -2$. Then $y_c = c_1 e^{2x} + c_2 e^{-2x}$ and we assume $y_p = (Ax^2 + Bx + C) \cos 2x + (Dx^2 + Ex + F) \sin 2x$. Substituting into the differential equation obtain

$$-8A = 0$$
$$-8B + 8D = 0$$
$$2A - 8C + 4E = 0$$
$$-8D = 1$$
$$-8A - 8E = 0$$
$$-4B + 2D - 8F = -3.$$

Then A = 0, $B = -\frac{1}{8}$, C = 0, $D = -\frac{1}{8}$, E = 0, $F = \frac{13}{32}$, so $y_p = -\frac{1}{8}x\cos 2x + \left(-\frac{1}{8}x^2 + \frac{13}{32}\right)\sin x$ and

$$y = c_1 e^{2x} + c_2 e^{-2x} - \frac{1}{8} x \cos 2x + \left(-\frac{1}{8} x^2 + \frac{13}{32}\right) \sin 2x$$

15. From $m^2 + 1 = 0$ we find $m_1 = i$ and $m_2 = -i$. Then $y_c = c_1 \cos x + c_2 \sin x$ and we as $y_p = (Ax^2 + Bx) \cos x + (Cx^2 + Dx) \sin x$. Substituting into the differential equation we 4C = 0, 2A + 2D = 0, -4A = 2, and -2B + 2C = 0. Then $A = -\frac{1}{2}, B = 0, C = 0, D = y_p = -\frac{1}{2}x^2 \cos x + \frac{1}{2}x \sin x$, and

$$y = c_1 \cos x + c_2 \sin x - \frac{1}{2}x^2 \cos x + \frac{1}{2}x \sin x.$$

16. From $m^2 - 5m = 0$ we find $m_1 = 5$ and $m_2 = 0$. Then $y_c = c_1 e^{5x} + c_2$ and we are $y_p = Ax^4 + Bx^3 + Cx^2 + Dx$. Substituting into the differential equation we obtain -20 = 12A - 15B = -4, 6B - 10C = -1, and 2C - 5D = 6. Then $A = -\frac{1}{10}$, $B = \frac{14}{75}$, $C = -D = -\frac{697}{625}$, $y_p = -\frac{1}{10}x^4 + \frac{14}{75}x^3 + \frac{53}{250}x^2 - \frac{697}{625}x$, and $y = c_1e^{5x} + c_2 - \frac{1}{10}x^4 + \frac{14}{75}x^3 + \frac{53}{250}x^2 - \frac{697}{625}x$.

From $m^2 - 2m + 5 = 0$ we find $m_1 = 1 + 2i$ and $m_2 = 1 - 2i$. Then $y_c = e^x(c_1 \cos 2x + c_2 \sin 2x)$ and we assume $y_p = Axe^x \cos 2x + Bxe^x \sin 2x$. Substituting into the differential equation we obtain $\pm B = 1$ and -4A = 0. Then A = 0, $B = \frac{1}{4}$, $y_p = \frac{1}{4}xe^x \sin 2x$, and

$$y = e^{x}(c_1 \cos 2x + c_2 \sin 2x) + \frac{1}{4}xe^{x} \sin 2x.$$

From $m^2 - 2m + 2 = 0$ we find $m_1 = 1 + i$ and $m_2 = 1 - i$. Then $y_c = e^x(c_1 \cos x + c_2 \sin x)$ and we assume $y_p = Ae^{2x} \cos x + Be^{2x} \sin x$. Substituting into the differential equation we obtain $A \div 2B = 1$ and -2A + B = -3. Then $A = \frac{7}{5}$, $B = -\frac{1}{5}$, $y_p = \frac{7}{5}e^{2x} \cos x - \frac{1}{5}e^{2x} \sin x$ and

$$y = e^{x}(c_{1}\cos x + c_{2}\sin x) + \frac{7}{5}e^{2x}\cos x - \frac{1}{5}e^{2x}\sin x$$

13. From $m^2 + 2m + 1 = 0$ we find $m_1 = m_2 = -1$. Then $y_c = c_1 e^{-x} + c_2 x e^{-x}$ and we assume $y_0 = A \cos x + B \sin x + C \cos 2x + D \sin 2x$. Substituting into the differential equation we obtain 2B = 0, -2A = 1, -3C + 4D = 3, and -4C - 3D = 0. Then $A = -\frac{1}{2}, B = 0, C = -\frac{9}{25}, D = \frac{12}{25}, y_0 = -\frac{1}{2} \cos x - \frac{9}{25} \cos 2x + \frac{12}{25} \sin 2x$, and

$$y = c_1 e^{-x} + c_2 x e^{-x} - \frac{1}{2} \cos x - \frac{9}{25} \cos 2x + \frac{12}{25} \sin 2x.$$

From $m^2 + 2m - 24 = 0$ we find $m_1 = -6$ and $m_2 = 4$. Then $y_c = c_1 e^{-6x} + c_2 e^{4x}$ and we assume $y_p = A + (Bx^2 + Cx)e^{4x}$. Substituting into the differential equation we obtain -24A = 16, B + 10C = -2, and 20B = -1. Then $A = -\frac{2}{3}$, $B = -\frac{1}{20}$, $C = -\frac{19}{100}$, $y_p = -\frac{2}{3} - (\frac{1}{20}x^2 + \frac{19}{100}x)e^{4x}$, and

$$y = c_1 e^{-6x} + c_2 e^{4x} - \frac{2}{3} - \left(\frac{1}{20}x^2 + \frac{19}{100}x\right)e^{4x}$$

11 From $m^3 - 6m^2 = 0$ we find $m_1 = m_2 = 0$ and $m_3 = 6$. Then $y_c = c_1 + c_2 x + c_3 e^{6x}$ and we assume $x_c = Ax^2 + B\cos x + C\sin x$. Substituting into the differential equation we obtain -12A = 3, B - C = -1, and B + 6C = 0. Then $A = -\frac{1}{4}$, $B = -\frac{6}{37}$, $C = \frac{1}{37}$, $y_p = -\frac{1}{4}x^2 - \frac{6}{37}\cos x + \frac{1}{37}\sin x$, and

$$y = c_1 + c_2 x + c_3 e^{6x} - \frac{1}{4}x^2 - \frac{6}{37}\cos x + \frac{1}{37}\sin x.$$

From $m^3 - 2m^2 - 4m + 8 = 0$ we find $m_1 = m_2 = 2$ and $m_3 = -2$. Then $y_c = c_1 e^{2x} + c_2 x e^{2x} + c_3 e^{-2x}$ and we assume $y_p = (Ax^3 + Bx^2)e^{2x}$. Substituting into the differential equation we obtain 24A = 6and 6A + 8B = 0. Then $A = \frac{1}{4}$, $B = -\frac{3}{16}$, $y_p = (\frac{1}{4}x^3 - \frac{3}{16}x^2)e^{2x}$, and

$$y = c_1 e^{2x} + c_2 x e^{2x} + c_3 e^{-2x} + \left(\frac{1}{4}x^3 - \frac{3}{16}x^2\right) e^{2x}.$$

From $m^3 - 3m^2 + 3m - 1 = 0$ we find $m_1 = m_2 = m_3 = 1$. Then $y_c = c_1 e^x + c_2 x e^x + c_3 x^2 e^x$ and we assume $y_p = Ax + B + Cx^3 e^x$. Substituting into the differential equation we obtain -A = 1,

159

Exercises 4.4 Undetermined Coefficients – Superposition Approach

$$3A - B = 0$$
, and $6C = -4$. Then $A = -1$, $B = -3$, $C = -\frac{2}{3}$, $y_p = -x - 3 - \frac{2}{3}x^3e^x$, and
 $y = c_1e^x + c_2xe^x + c_3x^2e^x - x - 3 - \frac{2}{3}x^3e^x$.

L: From $m^3 - m^2 - 4m + 4 = 0$ we find $m_1 = 1$, $m_2 = 2$, and $m_3 = -2$. Then $y_c = c_1 e^x + c_2 e^{2x} + c_3 e^{-x}$ and we assume $y_p = A + Bxe^x + Cxe^{2x}$. Substituting into the differential equation we obtain 4A = -3B = -1, and 4C = 1. Then $A = \frac{5}{4}$, $B = \frac{1}{3}$, $C = \frac{1}{4}$, $y_p = \frac{5}{4} + \frac{1}{3}xe^x + \frac{1}{4}xe^{2x}$, and $y = c_1e^x + c_2e^{2x} + c_3e^{-2x} + \frac{5}{4} + \frac{1}{3}xe^x + \frac{1}{4}xe^{2x}$.

- 25. From $m^4 + 2m^2 + 1 = 0$ we find $m_1 = m_3 = i$ and $m_2 = m_4 = -i$. Then $y_c = c_1 \cos x + c_2 \sin x c_3 x \cos x + c_4 x \sin x$ and we assume $y_p = Ax^2 + Bx + C$. Substituting into the differential equation we obtain A = 1, B = -2, and 4A + C = 1. Then A = 1, B = -2, C = -3, $y_p = x^2 2x 3$, and $y = c_1 \cos x + c_2 \sin x + c_3 x \cos x + c_4 x \sin x + x^2 2x 3$.
- 26. From $m^4 m^2 = 0$ we find $m_1 = m_2 = 0$, $m_3 = 1$, and $m_4 = -1$. Then $y_c = c_1 + c_2 x + c_3 e^x + c_4$ and we assume $y_p = Ax^3 + Bx^2 + (Cx^2 + Dx)e^{-x}$. Substituting into the differential equation that -6A = 4, -2B = 0, 10C 2D = 0, and -4C = 2. Then $A = -\frac{2}{3}, B = 0, C = -\frac{1}{2}$. $D = -\frac{5}{2}, y_p = -\frac{2}{3}x^3 (\frac{1}{2}x^2 + \frac{5}{2}x)e^{-x}$, and

$$y = c_1 + c_2 x + c_3 e^x + c_4 e^{-x} - \frac{2}{3} x^3 - \left(\frac{1}{2} x^2 + \frac{5}{2} x\right) e^{-x}.$$

- 27. We have $y_c = c_1 \cos 2x + c_2 \sin 2x$ and we assume $y_p = A$. Substituting into the differential equations find $A = -\frac{1}{2}$. Thus $y = c_1 \cos 2x + c_2 \sin 2x \frac{1}{2}$. From the initial conditions we obtain $c_1 =$ and $c_2 = \sqrt{2}$, so $y = \sqrt{2} \sin 2x \frac{1}{2}$.
- 25. We have $y_c = c_1 e^{-2x} + c_2 e^{x/2}$ and we assume $y_p = Ax^2 + Bx + C$. Substituting into the difference equation we find A = -7, B = -19, and C = -37. Thus $y = c_1 e^{-2x} + c_2 e^{x/2} 7x^2 19x From the initial conditions we obtain <math>c_1 = -\frac{1}{5}$ and $c_2 = \frac{186}{5}$, so

$$y = -\frac{1}{5}e^{-2x} + \frac{186}{5}e^{x/2} - 7x^2 - 19x - 37.$$

29. We have $y_c = c_1 e^{-x/5} + c_2$ and we assume $y_p = Ax^2 + Bx$. Substituting into the differential equative find A = -3 and B = 30. Thus $y = c_1 e^{-x/5} + c_2 - 3x^2 + 30x$. From the initial conditionation to the differential equation $c_1 = 200$ and $c_2 = -200$, so

$$y = 200e^{-x/5} - 200 - 3x^2 + 30x.$$

30. We have $y_c = c_1 e^{-2x} + c_2 x e^{-2x}$ and we assume $y_p = (Ax^3 + Bx^2)e^{-2x}$. Substituting int differential equation we find $A = \frac{1}{6}$ and $B = \frac{3}{2}$. Thus $y = c_1 e^{-2x} + c_2 x e^{-2x} + (\frac{1}{6}x^3 + \frac{3}{2}x^2)$ From the initial conditions we obtain $c_1 = 2$ and $c_2 = 9$, so

$$y = 2e^{-2x} + 9xe^{-2x} + \left(\frac{1}{6}x^3 + \frac{3}{2}x^2\right)e^{-2x}.$$

160

31. We have $y_c = e^{-2x}(c_1 \cos x + c_2 \sin x)$ and we assume $y_p = Ae^{-4x}$. Substituting into the differential equation we find A = 7. Thus $y = e^{-2x}(c_1 \cos x + c_2 \sin x) + 7e^{-4x}$. From the initial conditions we obtain $c_1 = -10$ and $c_2 = 9$, so

$$y = e^{-2x}(-10\cos x + 9\sin x) + 7e^{-4x}$$

32. We have $y_c = c_1 \cosh x + c_2 \sinh x$ and we assume $y_p = Ax \cosh x + Bx \sinh x$. Substituting into the differential equation we find A = 0 and $B = \frac{1}{2}$. Thus

$$y = c_1 \cosh x + c_2 \sinh x + \frac{1}{2}x \sinh x.$$

From the initial conditions we obtain $c_1 = 2$ and $c_2 = 12$, so

$$y = 2\cosh x + 12\sinh x + \frac{1}{2}x\sinh x.$$

53. We have $x_c = c_1 \cos \omega t + c_2 \sin \omega t$ and we assume $x_p = At \cos \omega t + Bt \sin \omega t$. Substituting into the differential equation we find $A = -F_0/2\omega$ and B = 0. Thus $x = c_1 \cos \omega t + c_2 \sin \omega t - (F_0/2\omega)t \cos \omega t$. From the initial conditions we obtain $c_1 = 0$ and $c_2 = F_0/2\omega^2$, so

$$x = (F_0/2\omega^2)\sin\omega t - (F_0/2\omega)t\cos\omega t.$$

14. We have $x_c = c_1 \cos \omega t + c_2 \sin \omega t$ and we assume $x_p = A \cos \gamma t + B \sin \gamma t$, where $\gamma \neq \omega$. Substituting into the differential equation we find $A = F_0/(\omega^2 - \gamma^2)$ and B = 0. Thus

$$x = c_1 \cos \omega t + c_2 \sin \omega t + \frac{F_0}{\omega^2 - \gamma^2} \cos \gamma t.$$

From the initial conditions we obtain $c_1 = -F_0/(\omega^2 - \gamma^2)$ and $c_2 = 0$, so

$$x = -\frac{F_0}{\omega^2 - \gamma^2}\cos\omega t + \frac{F_0}{\omega^2 - \gamma^2}\cos\gamma t.$$

15. We have $y_c = c_1 + c_2 e^x + c_3 x e^x$ and we assume $y_p = Ax + Bx^2 e^x + Ce^{5x}$. Substituting into the differential equation we find A = 2, B = -12, and $C = \frac{1}{2}$. Thus

$$y = c_1 + c_2 e^x + c_3 x e^x + 2x - 12x^2 e^x + \frac{1}{2}e^{5x}$$

From the initial conditions we obtain $c_1 = 11$, $c_2 = -11$, and $c_3 = 9$, so

$$y = 11 - 11e^{x} + 9xe^{x} + 2x - 12x^{2}e^{x} + \frac{1}{2}e^{5x}$$

We have $y_c = c_1 e^{-2x} + e^x (c_2 \cos \sqrt{3}x + c_3 \sin \sqrt{3}x)$ and we assume $y_p = Ax + B + Cxe^{-2x}$. Substituting into the differential equation we find $A = \frac{1}{4}$, $B = -\frac{5}{8}$, and $C = \frac{2}{3}$. Thus

$$y = c_1 e^{-2x} + e^x (c_2 \cos \sqrt{3} x + c_3 \sin \sqrt{3} x) + \frac{1}{4}x - \frac{5}{8} + \frac{2}{3}x e^{-2x}.$$

161

Exercises 4.4 Undetermined Coefficients Superposition Approach

From the initial conditions we obtain $c_1 = -\frac{23}{12}$, $c_2 = -\frac{59}{24}$, and $c_3 = \frac{17}{72}\sqrt{3}$, so

$$y = -\frac{23}{12}e^{-2x} + e^x \left(-\frac{59}{24}\cos\sqrt{3}x + \frac{17}{72}\sqrt{3}\sin\sqrt{3}x\right) + \frac{1}{4}x - \frac{5}{8} + \frac{2}{3}xe^{-2x}.$$

37. We have $y_c = c_1 \cos x + c_2 \sin x$ and we assume $y_p = Ax^2 + Bx + C$. Substituting into the difference equation we find A = 1. B = 0, and C = -1. Thus $y = c_1 \cos x + c_2 \sin x + x^2 - 1$. From y(0) =and y(1) = 0 we obtain

$$c_1 - 1 = 5$$
$$(\cos 1)c_1 + (\sin 1)c_2 = 0.$$

Solving this system we find $c_1 = 6$ and $c_2 = -6 \cot 1$. The solution of the boundary-value probles is

$$y = 6\cos x - 6(\cot 1)\sin x + x^2 - 1.$$

38. We have $y_c = e^x(c_1 \cos x + c_2 \sin x)$ and we assume $y_p = Ax + B$. Substituting into the difference equation we find A = 1 and B = 0. Thus $y = e^x(c_1 \cos x + c_2 \sin x) + x$. From y(0) = 0 and $y(\pi) = 0$ we obtain

$$c_1 = 0$$
$$\pi - e^{\pi} c_1 = \pi.$$

Solving this system we find $c_1 = 0$ and c_2 is any real number. The solution of the boundary-value problem is

$$y = c_2 e^x \sin x + x$$

39. The general solution of the differential equation y'' + 3y = 6x is $y = c_1 \cos \sqrt{3}x + c_2 \sin \sqrt{3}x - c_2 \sin \sqrt{3}x + c_2 \sin$

$$y = \frac{-4\sin\sqrt{3}x}{\sin\sqrt{3} + \sqrt{3}\cos\sqrt{3}} + 2x.$$

40. Using the general solution $y = c_1 \cos \sqrt{3}x + c_2 \sin \sqrt{3}x + 2x$, the boundary conditions y(0) + y'(0) = y(1) = 0 yield the system

$$c_1 + \sqrt{3}c_2 + 2 = 0$$
$$c_1 \cos \sqrt{3} + c_2 \sin \sqrt{3} + 2 = 0.$$

Solving gives

$$c_1 = \frac{2(-\sqrt{3} + \sin\sqrt{3})}{\sqrt{3}\cos\sqrt{3} - \sin\sqrt{3}}$$
 and $c_2 = \frac{2(1 - \cos\sqrt{3})}{\sqrt{3}\cos\sqrt{3} - \sin\sqrt{3}}$.

Thus,

$$y = \frac{2(-\sqrt{3} + \sin\sqrt{3})\cos\sqrt{3}x}{\sqrt{3}\cos\sqrt{3} - \sin\sqrt{3}} + \frac{2(1 - \cos\sqrt{3})\sin\sqrt{3}x}{\sqrt{3}\cos\sqrt{3} - \sin\sqrt{3}} + 2x.$$

41. We have $y_c = c_1 \cos 2x + c_2 \sin 2x$ and we assume $y_p = A \cos x + B \sin x$ on $[0, \pi/2]$. Substituting into the differential equation we find A = 0 and $B = \frac{1}{3}$. Thus $y = c_1 \cos 2x + c_2 \sin 2x + \frac{1}{3} \sin x$ on $[0, \pi/2]$. On $(\pi/2, \infty)$ we have $y = c_3 \cos 2x + c_4 \sin 2x$. From y(0) = 1 and y'(0) = 2 we obtain

$$c_1 = 1$$

 $\frac{1}{3} + 2c_2 = 2.$

Solving this system we find $c_1 = 1$ and $c_2 = \frac{5}{6}$. Thus $y = \cos 2x + \frac{5}{6} \sin 2x + \frac{1}{3} \sin x$ on $[0, \pi/2]$. Now continuity of y at $x = \pi/2$ implies

$$\cos \pi + \frac{5}{6}\sin \pi + \frac{1}{3}\sin \frac{\pi}{2} = c_3 \cos \pi + c_4 \sin \pi$$

or $-1 + \frac{1}{3} = -c_3$. Hence $c_3 = \frac{2}{3}$. Continuity of y' at $x = \pi/2$ implies $-2\sin\pi + \frac{5}{3}\cos\pi + \frac{1}{3}\cos\frac{\pi}{2} = -2c_3\sin\pi + 2c_4\cos\pi$

or $-\frac{5}{3} = -2c_4$. Then $c_4 = \frac{5}{6}$ and the solution of the initial-value problem is

$$y(x) = \begin{cases} \cos 2x + \frac{5}{6} \sin 2x + \frac{1}{3} \sin x, & 0 \le x \le \pi/2\\ \frac{2}{3} \cos 2x + \frac{5}{6} \sin 2x, & x > \pi/2. \end{cases}$$

4. We have $y_c = e^x(c_1 \cos 3x + c_2 \sin 3x)$ and we assume $y_p = A$ on $[0, \pi]$. Substituting into the differential equation we find A = 2. Thus, $y = e^x(c_1 \cos 3x + c_2 \sin 3x) + 2$ on $[0, \pi]$. On (π, ∞) we have $y = e^x(c_3 \cos 3x + c_4 \sin 3x)$. From y(0) = 0 and y'(0) = 0 we obtain

$$c_1 = -2, \qquad c_1 + 3c_2 = 0.$$

Solving this system, we find $c_1 = -2$ and $c_2 = \frac{2}{3}$. Thus $y = e^x(-2\cos 3x + \frac{2}{3}\sin 3x) + 2$ on $[0, \pi]$. Now, continuity of y at $x = \pi$ implies

$$e^{\pi}(-2\cos 3\pi + \frac{2}{3}\sin 3\pi) + 2 = e^{\pi}(c_3\cos 3\pi + c_4\sin 3\pi)$$

or $2 + 2e^{\pi} = -c_3 e^{\pi}$ or $c_3 = -2e^{-\pi}(1 + e^{\pi})$. Continuity of y' at π implies

$$\frac{20}{3}e^{\pi}\sin 3\pi = e^{\pi}[(c_3 + 3c_4)\cos 3\pi + (-3c_3 + c_4)\sin 3\pi]$$

 $r - c_3 e^{\pi} - 3c_4 e^{\pi} = 0$. Since $c_3 = -2e^{-\pi}(1 + e^{\pi})$ we have $c_4 = \frac{2}{3}e^{-\pi}(1 + e^{\pi})$. The solution of the initial-value problem is

$$y(x) = \begin{cases} e^x (-2\cos 3x + \frac{2}{3}\sin 3x) + 2, & 0 \le x \le \pi\\ (1+e^\pi)e^{x-\pi} (-2\cos 3x + \frac{2}{3}\sin 3x), & x > \pi. \end{cases}$$

163

Exercises 4.4 Undetermined Coefficients – Superposition Approach

:3. (a) From $y_p = Ae^{kx}$ we find $y'_p = Ake^{kx}$ and $y''_p = Ak^2e^{kx}$. Substituting into the differenti equation we get

$$aAk^2e^{kx} + bAke^{kx} + cAe^{kx} = (ak^2 + bk + c)Ae^{kx} = e^{kx},$$

so $(ak^2 + bk + c)A = 1$. Since k is not a root of $am^2 + bm + c = 0$, $A = 1/(ak^2 + bk + c)$.

b) From $y_p = Axe^{kx}$ we find $y'_p = Akxe^{kx} + Ae^{kx}$ and $y''_p = Ak^2xe^{kx} + 2Ake^{kx}$. Substituting in the differential equation we get

$$aAk^{2}xe^{kx} + 2aAke^{kx} + bAkxe^{kx} + bAe^{kx} + cAxe^{kx}$$
$$= (ak^{2} + bk + c)Axe^{kx} + (2ak + b)Ae^{kx}$$
$$= (0)Axe^{kx} + (2ak + b)Ae^{kx} = (2ak + b)Ae^{kx} = e^{kx}$$

where $ak^2 + bk + c = 0$ because k is a root of the auxiliary equation. Now, the roots the auxiliary equation are $-b/2a \pm \sqrt{b^2 - 4ac}/2a$, and since k is a root of multiplicity $a = k \neq -b/2a$ and $2ak + b \neq 0$. Thus (2ak + b)A = 1 and A = 1/(2ak + b).

(c) If k is a root of multiplicity two, then, as we saw in part (b), k = -b/2a and 2ak + b =From $y_p = Ax^2e^{kx}$ we find $y'_p = Akx^2e^{kx} + 2Axe^{kx}$ and $y''_p = Ak^2x^2e^{kx} + 4Akxe^{kx} = 2.4$ -Substituting into the differential equation, we get

$$aAk^{2}x^{2}e^{kx} + 4aAkxe^{kx} + 2aAe^{kx} + bAkx^{2}e^{kx} + 2bAxe^{kx} + cAx^{2}e^{kx}$$
$$= (ak^{2} + bk + c)Ax^{2}e^{kx} + 2(2ak + b)Axe^{kx} + 2aAe^{kx}$$
$$= (0)Ax^{2}e^{kx} + 2(0)Axe^{kx} + 2aAe^{kx} = 2aAe^{kx} = e^{kx}.$$

Since the differential equation is second order, $a \neq 0$ and A = 1/(2a).

 ± 4 . Using the double-angle formula for the cosine, we have

$$\sin x \cos 2x = \sin x (\cos^2 x - \sin^2 x) = \sin x (1 - 2\sin^2 x) = \sin x - 2\sin^3 x.$$

Since $\sin x$ is a solution of the related homogeneous differential equation we look for a partivilution of the form $y_p = Ax \sin x + Bx \cos x + C \sin^3 x$. Substituting into the differential equation we obtain

$$2A\cos x + (6C - 2B)\sin x - 8C\sin^3 x = \sin x - 2\sin^3 x.$$

Equating coefficients we find A = 0, $C = \frac{1}{4}$, and $B = \frac{1}{4}$. Thus, a particular solution is

$$y_p = \frac{1}{4}x\cos x + \frac{1}{4}\sin^3 x.$$

45. (a) $f(x) = e^x \sin x$. We see that $y_p \to \infty$ as $x \to \infty$ and $y_p \to 0$ as $x \to -\infty$.

(b) $f(x) = e^{-x}$. We see that $y_p \to \infty$ as $x \to \infty$ and $y_p \to \infty$ as $x \to -\infty$.

164

- (c) $f(x) = \sin 2x$. We see that y_p is sinusoidal.
- (d) f(x) = 1. We see that y_p is constant and simply translates y_c vertically.
- 42. The complementary function is $y_c = e^{2x}(c_1 \cos 2x + c_2 \sin 2x)$. We assume a particular solution of the form $y_p = (Ax^3 + Bx^2 + Cx)e^{2x} \cos 2x + (Dx^3 + Ex^2 + F)e^{2x} \sin 2x$. Substituting into the differential equation and using a CAS to simplify yields

$$[12Dx^{2} + (6A + 8E)x + (2B + 4F)]e^{2x} \cos 2x$$

+ $[-12Ax^{2} + (-8B + 6D)x + (-4C + 2E)]e^{2x} \sin 2x$
= $(2x^{2} - 3x)e^{2x} \cos 2x + (10x^{2} - x - 1)e^{2x} \sin 2x.$

This gives the system of equations

$$12D = 2, 6A + 8E = -3, 2B + 4F = 0,$$

-12A = 10. -8B + 6D = -1, -4C + 2E = -1,

from which we find $A = -\frac{5}{6}$, $B = \frac{1}{4}$, $C = \frac{3}{8}$, $D = \frac{1}{6}$, $E = \frac{1}{4}$, and $F = -\frac{1}{8}$. Thus, a particular solution of the differential equation is

$$y_p = \left(-\frac{5}{6}x^3 + \frac{1}{4}x^2 + \frac{3}{8}x\right)e^{2x}\cos 2x + \left(\frac{1}{6}x^3 + \frac{1}{4}x^2 - \frac{1}{8}x\right)e^{2x}\sin 2x.$$

z. The complementary function is $y_c = c_1 \cos x + c_2 \sin x + c_3 x \cos x + c_4 x \sin x$. We assume a particular solution of the form $y_p = Ax^2 \cos x + Bx^3 \sin x$. Substituting into the differential equation and using a CAS to simplify yields

$$(-8A + 24B)\cos x + 3Bx\sin x = 2\cos x - 3x\sin x.$$

This implies -8A + 24B = 2 and -24B = -3. Thus $B = \frac{1}{8}$, $A = \frac{1}{8}$, and $y_p = \frac{1}{8}x^2 \cos x + \frac{1}{8}x^3 \sin x$.

Exercises 4.5 Undetermined Coefficients - Annihilator Approach

- 1. $9D^2 4y = (3D 2)(3D + 2)y = \sin x$
- $D^{2} 5y = (D \sqrt{5})(D + \sqrt{5})y = x^{2} 2x$ $D^{2} 4D 12y = (D 6)(D + 2)y = x 6$
- $= 2D^2 3D 2y = (2D + 1)(D 2)y = 1$
- $D^3 + 10D^2 + 25D)y = D(D+5)^2y = e^x$
- $D^3 + 4D)y = D(D^2 + 4)y = e^x \cos 2x$

Exercises 4.5 Undetermined Coefficients - Annihilator Approach

7. $(D^3 + 2D^2 - 13D + 10)y = (D-1)(D-2)(D+5)y = xe^{-x}$ 8. $(D^3 + 4D^2 + 3D)y = D(D+1)(D+3)y = x^2 \cos x - 3x$ 9. $(D^4 + 8D)y = D(D+2)(D^2 - 2D + 4)y = 4$ 10. $(D^4 - 8D^2 + 16)y = (D - 2)^2(D + 2)^2y = (x^3 - 2x)e^{4x}$ 11. $D^4 y = D^4 (10x^3 - 2x) = D^3 (30x^2 - 2) = D^2 (60x) = D(60) = 0$ 12. $(2D-1)y = (2D-1)4e^{x/2} = 8De^{x/2} - 4e^{x/2} = 4e^{x/2} - 4e^{x/2} = 0$ **13.** $(D-2)(D+5)(e^{2x}+3e^{-5x}) = (D-2)(2e^{2x}-15e^{-5x}+5e^{2x}+15e^{-5x}) = (D-2)7e^{2x} = 14e^{2x}-12e^{-5x}$ 14. $(D^2 + 64)(2\cos 8x - 5\sin 8x) = D(-16\sin 8x - 40\cos 8x) + 64(2\cos 8x - 5\sin 8x)$ $= -128\cos 8x + 320\sin 8x + 128\cos 8x - 320\sin 8x = 0$ 15. D^4 because of x^3 16. D^5 because of x^4 18. $D^2(D-6)^2$ because of x and xe^{6x} 17. D(D-2) because of 1 and e^{2x} 19. $D^2 \div 4$ because of $\cos 2x$ **20.** $D(D^2+1)$ because of 1 and sin x 21. $D^3(D^2 + 16)$ because of x^2 and $\sin 4x$ **22.** $D^2(D^2+1)(D^2+25)$ because of x, sin x, and cos 5x 23. $(D+1)(D-1)^3$ because of e^{-x} and x^2e^x 24. D(D-1)(D-2) because of 1, e^x , and e^{2x} **25.** $D(D^2 - 2D + 5)$ because of 1 and $e^x \cos 2x$ 26. $(D^2 + 2D + 2)(D^2 - 4D + 5)$ because of $e^{-x} \sin x$ and $e^{2x} \cos x$ 27. 1, x, x^2, x^3, x^4 **28.** $D^2 + 4D = D(D+4)$; 1, e^{-4x} 29. e^{6x} , $e^{-3x/2}$ **30.** $D^2 - 9D - 36 = (D - 12)(D + 3)$: e^{12x} , e^{-3x} **31.** $\cos \sqrt{5} x$, $\sin \sqrt{5} x$ 32. $D^2 - 6D + 10 = D^2 - 2(3)D + (3^2 + 1^2); e^{3x} \cos x, e^{3x} \sin x$ **33.** $D^3 - 10D^2 + 25D = D(D-5)^2$: 1, e^{5x} , xe^{5x} 34. 1. x, e^{5x}, e^{7x} 35. Applying D to the differential equation we obtain

$$D(D^2 - 9)y = 0.$$

166

Then

$$y = \underbrace{c_1 e^{3x} + c_2 e^{-3x}}_{y_c} + c_3$$

and $y_p = A$. Substituting y_p into the differential equation yields -9A = 54 or A = -6. The general solution is

$$y = c_1 e^{3x} + c_2 e^{-3x} - 6$$

If. Applying D to the differential equation we obtain

$$D(2D^2 - 7D + 5)y = 0.$$

Then

$$y = \underbrace{c_1 e^{5x/2} + c_2 e^x}_{y_c} + c_3$$

and $y_p = A$. Substituting y_p into the differential equation yields 5A = -29 or A = -29/5. The general solution is

$$y = c_1 e^{5x/2} + c_2 e^x - \frac{29}{5}.$$

: Applying D to the differential equation we obtain

$$D(D^2 + D)y = D^2(D + 1)y = 0.$$

Then

$$y = \underbrace{c_1 + c_2 e^{-x}}_{y_c} + c_3 x$$

and $y_p = Ax$. Substituting y_p into the differential equation yields A = 3. The general solution is

$$y = c_1 + c_2 e^{-3x} + 3x.$$

: Applying D to the differential equation we obtain

$$D(D^{3} + 2D^{2} + D)y = D^{2}(D+1)^{2}y = 0.$$

Then

$$y = \underbrace{c_1 + c_2 e^{-x} + c_3 x e^{-x}}_{y_c} + c_4 x$$

and $y_p = Ax$. Substituting y_p into the differential equation yields A = 10. The general solution is

$$y = c_1 + c_2 e^{-x} + c_3 x e^{-x} + 10x$$

• Applying D^2 to the differential equation we obtain

$$D^{2}(D^{2} + 4D + 4)y = D^{2}(D + 2)^{2}y = 0.$$

167

Exercises 4.5 Undetermined Coefficients - Annihilator Approach

Then

$$y = \underbrace{c_1 e^{-2x} + c_2 x e^{-2x}}_{y_c} + c_3 + c_4 x$$

and $y_p = Ax + B$. Substituting y_p into the differential equation yields 4Ax + (4A + 4B) = 2z - Equating coefficients gives

$$4A = 2$$

$$4A + 4B = 6.$$

Then A = 1/2, B = 1. and the general solution is

$$y = c_1 e^{-2x} + c_2 x e^{-2x} + \frac{1}{2}x + 1.$$

40. Applying D^2 to the differential equation we obtain

$$D^{2}(D^{2} + 3D)y = D^{3}(D+3)y = 0.$$

Then

$$y = \underbrace{c_1 + c_2 e^{-3x}}_{y_c} + c_3 x^2 + c_4 x$$

and $y_p = Ax^2 + Bx$. Substituting y_p into the differential equation yields 6Ax + (2A + 3B) = -Equating coefficients gives

$$2A + 3B = -5$$

6A = 4

$$2A \pm 3D = -3$$

Then A = 2/3, B = -19/9, and the general solution is

$$y = c_1 + c_2 e^{-3x} + \frac{2}{3}x^2 - \frac{19}{9}x.$$

41. Applying D^3 to the differential equation we obtain

$$D^{3}(D^{3} + D^{2})y = D^{5}(D + 1)y = 0.$$

Then

$$y = \underbrace{c_1 + c_2 x + c_3 e^{-x}}_{y_c} + c_4 x^4 + c_5 x^3 + c_6 x^2$$

and $y_p = Ax^4 + Bx^3 + Cx^2$. Substituting y_p into the differential equation yields

$$12Ax^2 + (24A + 6B)x + (6B + 2C) = 8x^2.$$

Equating coefficients gives

$$12A = 8$$
$$24A + 6B = 0$$
$$6B + 2C = 0.$$

168

Then A = 2/3, B = -8/3, C = 8, and the general solution is

$$y = c_1 + c_2 x + c_3 e^{-x} + \frac{2}{3}x^4 - \frac{8}{3}x^3 + 8x^2.$$

42. Applying D^4 to the differential equation we obtain

$$D^4(D^2 - 2D + 1)y = D^4(D - 1)^2 y = 0.$$

Then

$$y = \underbrace{c_1 e^x + c_2 x e^x}_{y_c} + c_3 x^3 + c_4 x^2 + c_5 x + c_6$$

and $y_p = Ax^3 + Bx^2 + Cx + E$. Substituting y_p into the differential equation yields

$$Ax^{3} + (B - 6A)x^{2} + (6A - 4B + C)x + (2B - 2C + E) = x^{3} + 4x$$

 Ξ quating coefficients gives

A = 1B - 6A = 06A - 4B + C = 42B - 2C + E = 0.

Then A = 1, B = 6, C = 22, E = 32, and the general solution is

$$y = c_1 e^x + c_2 x e^x + x^3 + 6x^2 + 22x + 32.$$

43 Applying D-4 to the differential equation we obtain

$$(D-4)(D^2 - D - 12)y = (D-4)^2(D+3)y = 0.$$

 $\exists hen$

$$y = \underbrace{c_1 e^{4x} + c_2 e^{-3x}}_{y_c} + c_3 x e^{4x}$$

and $y_p = Axe^{4x}$. Substituting y_p into the differential equation yields $7Ae^{4x} = e^{4x}$. Equating perficients gives A = 1/7. The general solution is

$$y = c_1 e^{4x} + c_2 e^{-3x} + \frac{1}{7} x e^{4x}.$$

 \rightarrow \Rightarrow \Rightarrow pplying D - 6 to the differential equation we obtain

$$(D-6)(D^2+2D+2)y = 0$$

Then

$$y = \underbrace{e^{-x}(c_1 \cos x + c_2 \sin x)}_{y_c} + c_3 e^{6x}$$

169

Exercises 4.5 Undetermined Coefficients - Annihilator Approach

and $y_p = Ae^{6x}$. Substituting y_p into the differential equation yields $50Ae^{6x} = 5e^{6x}$. Eq. coefficients gives A = 1/10. The general solution is

$$y = e^{-x}(c_1 \cos x + c_2 \sin x) + \frac{1}{10}e^{6x}$$

45. Applying D(D-1) to the differential equation we obtain

$$D(D-1)(D^2 - 2D - 3)y = D(D-1)(D+1)(D-3)y = 0.$$

Then

$$y = \underbrace{c_1 e^{3x} + c_2 e^{-x}}_{y_c} + c_3 e^x + c_4$$

and $y_p = Ae^x + B$. Substituting y_p into the differential equation yields $-4Ae^x - 3B = 4$. Equating coefficients gives A = -1 and B = 3. The general solution is

$$y = c_1 e^{3x} + c_2 e^{-x} - e^x + 3.$$

46. Applying $D^2(D+2)$ to the differential equation we obtain

$$D^{2}(D+2)(D^{2}+6D+8)y = D^{2}(D+2)^{2}(D+4)y = 0$$

Then

$$y = \underbrace{c_1 e^{-2x} + c_2 e^{-4x}}_{y_c} + c_3 x e^{-2x} + c_4 x + c_5$$

and $y_p = Axe^{-2x} + Bx + C$. Substituting y_p into the differential equation yields

$$2Ae^{-2x} + 8Bx + (6B + 8C) = 3e^{-2x} + 2x.$$

Equating coefficients gives

$$2A = 3$$
$$8B = 2$$
$$6B + 8C = 0.$$

Then A = 3/2, B = 1/4, C = -3/16 , and the general solution is

$$y = c_1 e^{-2x} + c_2 e^{-4x} + \frac{3}{2}x e^{-2x} + \frac{1}{4}x - \frac{3}{16}$$

47. Applying $D^2 + 1$ to the differential equation we obtain

$$(D^2 + 1)(D^2 + 25)y = 0.$$

Then

$$y = \underbrace{c_1 \cos 5x + c_2 \sin 5x}_{y_c} + c_3 \cos x + c_4 \sin x$$

170

and $y_p = A \cos x + B \sin x$. Substituting y_p into the differential equation yields

$$24A\cos x + 24B\sin x = 6\sin x.$$

Equating coefficients gives A = 0 and B = 1/4. The general solution is

$$y = c_1 \cos 5x + c_2 \sin 5x + \frac{1}{4} \sin x.$$

 \neq Applying $D(D^2 + 1)$ to the differential equation we obtain

$$D(D^2 + 1)(D^2 + 4)y = 0.$$

Then

$$y = \underbrace{c_1 \cos 2x + c_2 \sin 2x}_{y_c} + c_3 \cos x + c_4 \sin x + c_5$$

and $y_p = A \cos x + B \sin x + C$. Substituting y_p into the differential equation yields

 $3A\cos x + 3B\sin x + 4C = 4\cos x + 3\sin x - 8.$

Equating coefficients gives A = 4/3, B = 1, and C = -2. The general solution is

$$y = c_1 \cos 2x + c_2 \sin 2x + \frac{4}{3} \cos x + \sin x - 2.$$

42. Applying $(D-4)^2$ to the differential equation we obtain

$$(D-4)^2(D^2+6D+9)y = (D-4)^2(D+3)^2y = 0.$$

Then

$$y = \underbrace{c_1 e^{-3x} + c_2 x e^{-3x}}_{y_c} + c_3 x e^{4x} + c_4 e^{4x}$$

and $y_p = Axe^{4x} + Be^{4x}$. Substituting y_p into the differential equation yields

$$49Axe^{4x} + (14A + 49B)e^{4x} = -xe^{4x}.$$

Equating coefficients gives

$$49A = -1$$
$$14A + 49B = 0.$$

Then A = -1/49, B = 2/343, and the general solution is

$$y = c_1 e^{-3x} + c_2 x e^{-3x} - \frac{1}{49} x e^{4x} + \frac{2}{343} e^{4x}$$

Applying $D^2(D-1)^2$ to the differential equation we obtain

$$D^{2}(D-1)^{2}(D^{2}+3D-10)y = D^{2}(D-1)^{2}(D-2)(D+5)y = 0.$$

171

Then

$$y = \underbrace{c_1 e^{2x} + c_2 e^{-5x}}_{y_c} + c_3 x e^x + c_4 e^x + c_5 x + c_6$$

and $y_p = Axe^x + Be^x + Cx + E$. Substituting y_p into the differential equation yields

$$-6Axe^{x} + (5A - 6B)e^{x} - 10Cx + (3C - 10E) = xe^{x} + x.$$

Equating coefficients gives

$$-6A = 1$$
$$5A - 6B = 0$$
$$-10C = 1$$
$$3C - 10E = 0.$$

Then A = -1/6, B = -5/36, C = -1/10, E = -3/100, and the general solution is

$$y = c_1 e^{2x} + c_2 e^{-5x} - \frac{1}{6} x e^x - \frac{5}{36} e^x - \frac{1}{10} x - \frac{3}{100}$$

51. Applying $D(D-1)^3$ to the differential equation we obtain

$$D(D-1)^3(D^2-1)y = D(D-1)^4(D+1)y = 0.$$

Then

$$y = \underbrace{c_1 e^x + c_2 e^{-x}}_{y_c} + c_3 x^3 e^x + c_4 x^2 e^x + c_5 x e^x + c_6$$

and $y_p = Ax^3e^x + Bx^2e^x + Cxe^x + E$. Substituting y_p into the differential equation yields

$$6Ax^{2}e^{x} + (6A + 4B)xe^{x} + (2B + 2C)e^{x} - E = x^{2}e^{x} + 5.$$

Equating coefficients gives

6A = 16A + 4B = 02B + 2C = 0-E = 5.

Then A = 1/6, B = -1/4, C = 1/4, E = -5, and the general solution is

$$y = c_1 e^x + c_2 e^{-x} + \frac{1}{6} x^3 e^x - \frac{1}{4} x^2 e^x + \frac{1}{4} x e^x - 5$$

52. Applying $(D+1)^3$ to the differential equation we obtain

$$(D+1)^3(D^2+2D+1)y = (D+1)^5y = 0.$$

172

Then

$$y = \underbrace{c_1 e^{-x} + c_2 x e^{-x}}_{y_c} + c_3 x^4 e^{-x} + c_4 x^3 e^{-x} + c_5 x^2 e^{-x}$$

and $y_p = Ax^4e^{-x} + Bx^3e^{-x} + Cx^2e^{-x}$. Substituting y_p into the differential equation yields

$$12Ax^2e^{-x} + 6Bxe^{-x} + 2Ce^{-x} = x^2e^{-x}$$

Equating coefficients gives $A = \frac{1}{12}$, B = 0, and C = 0. The general solution is

$$y = c_1 e^{-x} + c_2 x e^{-x} + \frac{1}{12} x^4 e^{-x}.$$

55. Applying $D^2 - 2D + 2$ to the differential equation we obtain

$$(D^2 - 2D + 2)(D^2 - 2D + 5)y = 0.$$

Then

$$y = \underbrace{e^x(c_1 \cos 2x + c_2 \sin 2x)}_{y_c} + e^x(c_3 \cos x + c_4 \sin x)$$

and $y_p = Ae^x \cos x + Be^x \sin x$. Substituting y_p into the differential equation yields

$$3Ae^x \cos x + 3Be^x \sin x = e^x \sin x.$$

Equating coefficients gives A = 0 and B = 1/3. The general solution is

$$y = e^{x}(c_1 \cos 2x + c_2 \sin 2x) + \frac{1}{3}e^{x} \sin x.$$

 \rightarrow Applying $D^2 - 2D + 10$ to the differential equation we obtain

$$(D^2 - 2D + 10)\left(D^2 + D + \frac{1}{4}\right)y = (D^2 - 2D + 10)\left(D + \frac{1}{2}\right)^2 y = 0.$$

 $\mathbb{T}hen$

$$y = \underbrace{c_1 e^{-x/2} + c_2 x e^{-x/2}}_{y_c} + c_3 e^x \cos 3x + c_4 e^x \sin 3x$$

and $y_p = Ae^x \cos 3x + Be^x \sin 3x$. Substituting y_p into the differential equation yields

$$(9B - 27A/4)e^x \cos 3x - (9A + 27B/4)e^x \sin 3x = -e^x \cos 3x + e^x \sin 3x.$$

 Ξ quating coefficients gives

$$-\frac{27}{4}A + 9B = -1$$
$$-9A - \frac{27}{4}B = 1.$$

Then A = -4/225, B = -28/225, and the general solution is

$$y = c_1 e^{-x/2} + c_2 x e^{-x/2} - \frac{4}{225} e^x \cos 3x - \frac{28}{225} e^x \sin 3x.$$

173

Exercises 4.5 Undetermined Coefficients - Annihilator Approach

55. Applying $D^2 + 25$ to the differential equation we obtain

$$(D^{2}+25)(D^{2}+25) = (D^{2}+25)^{2} = 0.$$

Then

$$y = \underbrace{c_1 \cos 5x + c_2 \sin 5x}_{y_c} + c_3 x \cos 5x + c_4 x \cos 5x$$

and $y_p = Ax \cos 5x + Bx \sin 5x$. Substituting y_p into the differential equation yields

$$10B\cos 5x - 10A\sin 5x = 20\sin 5x$$

Equating coefficients gives A = -2 and B = 0. The general solution is

 $y = c_1 \cos 5x + c_2 \sin 5x - 2x \cos 5x.$

56. Applying $D^2 + 1$ to the differential equation we obtain

$$(D^{2} + 1)(D^{2} + 1) = (D^{2} + 1)^{2} = 0.$$

Then

$$y = \underbrace{c_1 \cos x + c_2 \sin x}_{y_c} + c_3 x \cos x + c_4 x \cos x$$

and $y_p = Ax \cos x + Bx \sin x$. Substituting y_p into the differential equation yields

$$2B\cos x - 2A\sin x = 4\cos x - \sin x$$

Equating coefficients gives A = 1/2 and B = 2. The general solution is

$$y = c_1 \cos x + c_2 \sin x + \frac{1}{2}x \cos x - 2x \sin x.$$

57. Applying $(D^2 + 1)^2$ to the differential equation we obtain

$$(D^2 + 1)^2(D^2 + D + 1) = 0.$$

Then

$$y = \underbrace{e^{-x/2} \left[c_1 \cos \frac{\sqrt{3}}{2} x + c_2 \sin \frac{\sqrt{3}}{2} x \right]}_{y_c} + c_3 \cos x + c_4 \sin x + c_5 x \cos x + c_6 x \sin x$$

and $y_p = A \cos x + B \sin x + Cx \cos x + Ex \sin x$. Substituting y_p into the differential equation.

$$(B + C + 2E)\cos x + Ex\cos x + (-A - 2C + E)\sin x - Cx\sin x = x\sin x.$$

Equating coefficients gives

$$B + C + 2E = 0$$
$$E = 0$$
$$-A - 2C + E = 0$$
$$-C = 1.$$

174

Then A = 2, B = 1, C = -1, and E = 0, and the general solution is

$$y = e^{-x/2} \left[c_1 \cos \frac{\sqrt{3}}{2} x + c_2 \sin \frac{\sqrt{3}}{2} x \right] + 2 \cos x + \sin x - x \cos x$$

55. Writing $\cos^2 x = \frac{1}{2}(1 + \cos 2x)$ and applying $D(D^2 + 4)$ to the differential equation we obtain $D(D^2 + 4)(D^2 + 4) = D(D^2 + 4)^2 = 0.$

Then

$$y = \underbrace{c_1 \cos 2x + c_2 \sin 2x}_{y_c} + c_3 x \cos 2x + c_4 x \sin 2x + c_5$$

and $y_p = Ax \cos 2x + Bx \sin 2x + C$. Substituting y_p into the differential equation yields

$$-4A\sin 2x + 4B\cos 2x + 4C = \frac{1}{2} + \frac{1}{2}\cos 2x$$

Equating coefficients gives A = 0, B = 1/8, and C = 1/8. The general solution is

$$y = c_1 \cos 2x + c_2 \sin 2x + \frac{1}{8}x \sin 2x + \frac{1}{8}x$$

79. Applying D^3 to the differential equation we obtain

$$D^3(D^3 + 8D^2) = D^5(D+8) = 0$$

Then

$$y = \underbrace{c_1 + c_2 x + c_3 e^{-8x}}_{y_c} + c_4 x^2 + c_5 x^3 + c_6 x^4$$

and $y_p = Ax^2 + Bx^3 + Cx^4$. Substituting y_p into the differential equation yields

$$16A + 6B + (48B + 24C)x + 96Cx^2 = 2 + 9x - 6x^2.$$

Equating coefficients gives

$$16A + 6B = 2$$
$$48B + 24C = 9$$

$$96C = -6$$

Then A = 11/256, B = 7/32, and C = -1/16, and the general solution is

$$y = c_1 + c_2 x + c_3 e^{-8x} + \frac{11}{256} x^2 + \frac{7}{32} x^3 - \frac{1}{16} x^4.$$

Solution Applying $D(D-1)^2(D+1)$ to the differential equation we obtain

$$D(D-1)^{2}(D+1)(D^{3}-D^{2}+D-1) = D(D-1)^{3}(D+1)(D^{2}+1) = 0.$$

Then

$$y = \underbrace{c_1 e^x + c_2 \cos x + c_3 \sin x}_{y_c} + c_4 + c_5 e^{-x} + c_6 x e^x + c_7 x^2 e^x$$

175

and $y_p = A + Be^{-x} + Cxe^x + Ex^2e^x$. Substituting y_p into the differential equation yields

$$4Exe^{x} + (2C+4E)e^{x} - 4Be^{-x} - A = xe^{x} - e^{-x} + 7.$$

Equating coefficients gives

$$4E = 1$$
$$2C + 4E = 0$$
$$-4B = -1$$
$$-A = 7.$$

Then A = -7, B = 1/4, C = -1/2, and E = 1/4, and the general solution is

$$y = c_1 e^x + c_2 \cos x + c_3 \sin x - 7 + \frac{1}{4} e^{-x} - \frac{1}{2} x e^x + \frac{1}{4} x^2 e^x.$$

61. Applying $D^2(D-1)$ to the differential equation we obtain

$$D^{2}(D-1)(D^{3}-3D^{2}+3D-1) = D^{2}(D-1)^{4} = 0.$$

Then

$$y = \underbrace{c_1 e^x + c_2 x e^x + c_3 x^2 e^x}_{y_c} + c_4 + c_5 x + c_6 x^3 e^x$$

and $y_p = A + Bx + Cx^3 e^x$. Substituting y_p into the differential equation yields

$$(-A+3B) - Bx + 6Ce^x = 16 - x + e^x.$$

Equating coefficients gives

$$A + 3B = 16$$

 $-B = -1$
 $6C = 1.$

Then A = -13, B = 1, and C = 1/6, and the general solution is

$$y = c_1 e^x + c_2 x e^x + c_3 x^2 e^x - 13 + x + \frac{1}{6} x^3 e^x.$$

62. Writing $(e^x + e^{-x})^2 = 2 + e^{2x} + e^{-2x}$ and applying D(D-2)(D+2) to the differential equation obtain

$$D(D-2)(D+2)(2D^3 - 3D^2 - 3D + 2) = D(D-2)^2(D+2)(D+1)(2D-1) = 0.$$

Then

$$y = \underbrace{c_1 e^{-x} + c_2 e^{2x} + c_3 e^{x/2}}_{y_c} + c_4 + c_5 x e^{2x} + c_6 e^{-2x}$$

176

and $y_p = A + Bxe^{2x} + Ce^{-2x}$. Substituting y_p into the differential equation yields

$$2A + 9Be^{2x} - 20Ce^{-2x} = 2 + e^{2x} + e^{-2x}.$$

Equating coefficients gives A = 1, B = 1/9, and C = -1/20. The general solution is

$$y = c_1 e^{-x} + c_2 e^{2x} + c_3 e^{x/2} + 1 + \frac{1}{9} x e^{2x} - \frac{1}{20} e^{-2x}.$$

 \therefore Applying D(D-1) to the differential equation we obtain

$$D(D-1)(D^4 - 2D^3 + D^2) = D^3(D-1)^3 = 0.$$

Then

$$y = \underbrace{c_1 + c_2 x + c_3 e^x + c_4 x e^x}_{y_c} + c_5 x^2 + c_6 x^2 e^x$$

and $y_p = Ax^2 + Bx^2e^x$. Substituting y_p into the differential equation yields $2A + 2Be^x = 1 + e^x$. Equating coefficients gives A = 1/2 and B = 1/2. The general solution is

$$y = c_1 + c_2 x + c_3 e^x + c_4 x e^x + \frac{1}{2} x^2 + \frac{1}{2} x^2 e^x.$$

i-Applying $D^3(D-2)$ to the differential equation we obtain

 $D^{3}(D-2)(D^{4}-4D^{2}) = D^{5}(D-2)^{2}(D+2) = 0.$

Then

$$y = \underbrace{c_1 + c_2 x + c_3 e^{2x} + c_4 e^{-2x}}_{y_c} + c_5 x^2 + c_6 x^3 + c_7 x^4 + c_8 x e^{2x}$$

and $y_p = Ax^2 + Bx^3 + Cx^4 + Exe^{2x}$. Substituting y_p into the differential equation yields

$$(-8A + 24C) - 24Bx - 48Cx^{2} + 16Ee^{2x} = 5x^{2} - e^{2x}.$$

Equating coefficients gives

$$-8A + 24C = 0$$
$$-24B = 0$$
$$-48C = 5$$
$$16E = -1$$

Then A = -5/16, B = 0, C = -5/48, and E = -1/16, and the general solution is

$$y = c_1 + c_2 x + c_3 e^{2x} + c_4 e^{-2x} - \frac{5}{16} x^2 - \frac{5}{48} x^4 - \frac{1}{16} x e^{2x}$$

177

Exercises 4.5 Undetermined Coefficients - Annihilator Approach

65. The complementary function is $y_c = c_1 e^{8x} + c_2 e^{-8x}$. Using D to annihilate 16 we find $y_p =$ Substituting y_p into the differential equation we obtain -64A = 16. Thus A = -1/4 and

$$y = c_1 e^{8x} + c_2 e^{-8x} - \frac{1}{4}$$
$$y' = 8c_1 e^{8x} - 8c_2 e^{-8x}.$$

The initial conditions imply

$$c_1 + c_2 = \frac{5}{4}$$
$$8c_1 - 8c_2 = 0.$$

Thus $c_1 = c_2 = 5/8$ and

$$y = \frac{5}{8}e^{8x} + \frac{5}{8}e^{-8x} - \frac{1}{4}.$$

66. The complementary function is $y_c = c_1 + c_2 e^{-x}$. Using D^2 to annihilate x we find $y_p = Ax - 1$. Substituting y_p into the differential equation we obtain (A + 2B) + 2Bx = x. Thus A = -1. B = 1/2, and

$$y = c_1 + c_2 e^{-x} - x + \frac{1}{2} x^2$$
$$y' = -c_2 e^{-x} - 1 + x.$$

The initial conditions imply

 $c_1 + c_2 = 1$ $-c_2 = 1.$

Thus $c_1 = 2$ and $c_2 = -1$, and

$$y = 2 - e^{-x} - x + \frac{1}{2}x^2.$$

67. The complementary function is $y_c = c_1 + c_2 e^{5x}$. Using D^2 to annihilate x - 2 we find $y_p = Ax - C_2$. Substituting y_p into the differential equation we obtain (-5A+2B)-10Bx = -2+x. Thus A = A = A = -1/10, and

$$y = c_1 + c_2 e^{5x} + \frac{9}{25}x - \frac{1}{10}x^2$$
$$y' = 5c_2 e^{5x} + \frac{9}{25} - \frac{1}{5}x.$$

The initial conditions imply

$$c_1 + c_2 = 0$$

 $c_2 = \frac{41}{125}$

178

Thus $c_1 = -41/125$ and $c_2 = 41/125$, and

$$y = -\frac{41}{125} + \frac{41}{125}e^{5x} + \frac{9}{25}x - \frac{1}{10}x^2.$$

55. The complementary function is $y_c = c_1 e^x + c_2 e^{-6x}$. Using D - 2 to annihilate $10e^{2x}$ we find $y_p = Ae^{2x}$. Substituting y_p into the differential equation we obtain $8Ae^{2x} = 10e^{2x}$. Thus A = 5/4 and

$$y = c_1 e^x + c_2 e^{-6x} + \frac{5}{4} e^{2x}$$
$$y' = c_1 e^x - 6c_2 e^{-6x} + \frac{5}{2} e^{2x}$$

The initial conditions imply

$$c_1 + c_2 = -\frac{1}{4}$$
$$c_1 - 6c_2 = -\frac{3}{2}.$$

Thus $c_1 = -3/7$ and $c_2 = 5/28$, and

$$y = -\frac{3}{7}e^x + \frac{5}{28}e^{-6x} + \frac{5}{4}e^{2x}$$

The complementary function is $y_c = c_1 \cos x + c_2 \sin x$. Using $(D^2 + 1)(D^2 + 4)$ to annihilate $8 \cos 2x - 4 \sin x$ we find $y_p = Ax \cos x + Bx \sin x + C \cos 2x + E \sin 2x$. Substituting y_p into the differential equation we obtain $2B \cos x - 3C \cos 2x - 2A \sin x - 3E \sin 2x = 8 \cos 2x - 4 \sin x$. Thus A = 2, B = 0, C = -8/3, and E = 0, and

$$y = c_1 \cos x + c_2 \sin x + 2x \cos x - \frac{8}{3} \cos 2x$$
$$y' = -c_1 \sin x + c_2 \cos x + 2 \cos x - 2x \sin x + \frac{16}{3} \sin 2x$$

The initial conditions imply

$$c_2 + \frac{8}{3} = -1$$
$$-c_1 - \pi = 0.$$

Thus $c_1 = -\pi$ and $c_2 = -11/3$, and

$$y = -\pi \cos x - \frac{11}{3} \sin x + 2x \cos x - \frac{8}{3} \cos 2x.$$

The complementary function is $y_c = c_1 + c_2 e^x + c_3 x e^x$. Using $D(D-1)^2$ to annihilate $xe^x + 5$ we find $y_p = Ax + Bx^2 e^x + Cx^3 e^x$. Substituting y_p into the differential equation we obtain

179

Exercises 4.5 Undetermined Coefficients - Annihilator Approach

$$A + (2B + 6C)e^{x} + 6Cxe^{x} = xe^{x} + 5. \text{ Thus } A = 5, B = -1/2, \text{ and } C = 1/6, \text{ and}$$
$$y = c_{1} + c_{2}e^{x} + c_{3}xe^{x} + 5x - \frac{1}{2}x^{2}e^{x} + \frac{1}{6}x^{3}e^{x}$$
$$y' = c_{2}e^{x} + c_{3}(xe^{x} + e^{x}) + 5 - xe^{x} + \frac{1}{6}x^{3}e^{x}$$
$$y'' = c_{2}e^{x} + c_{3}(xe^{x} + 2e^{x}) - e^{x} - xe^{x} + \frac{1}{2}x^{2}e^{x} + \frac{1}{6}x^{3}e^{x}.$$

The initial conditions imply

$$c_1 + c_2 = 2$$

 $c_2 + c_3 + 5 = 2$
 $c_2 + 2c_3 - 1 = -1.$

Thus $c_1 = 8$, $c_2 = -6$, and $c_3 = 3$, and

$$y = 8 - 6e^{x} + 3xe^{x} + 5x - \frac{1}{2}x^{2}e^{x} + \frac{1}{6}x^{3}e^{x}.$$

71. The complementary function is $y_c = e^{2x}(c_1 \cos 2x + c_2 \sin 2x)$. Using D^4 to annihilate x find $y_p = A + Bx + Cx^2 + Ex^3$. Substituting y_p into the differential equation we $C = (8A - 4B + 2C) + (8B - 8C + 6E)x + (8C - 12E)x^2 + 8Ex^3 = x^3$. Thus A = 0, B = C = 3/16, and E = 1/8, and

$$y = e^{2x}(c_1\cos 2x + c_2\sin 2x) + \frac{3}{32}x + \frac{3}{16}x^2 + \frac{1}{8}x^3$$
$$y' = e^{2x}\left[c_1(2\cos 2x - 2\sin 2x) + c_2(2\cos 2x + 2\sin 2x)\right] + \frac{3}{32} + \frac{3}{8}x + \frac{3}{8}x^2.$$

The initial conditions imply

$$c_1 = 2$$
$$2c_1 + 2c_2 + \frac{3}{32} = 4.$$

Thus $c_1 = 2, c_2 = -3/64$, and

$$y = e^{2x}(2\cos 2x - \frac{3}{64}\sin 2x) + \frac{3}{32}x + \frac{3}{16}x^2 + \frac{1}{8}x^3.$$

-2. The complementary function is $y_c = c_1 + c_2x + c_3x^2 + c_4e^x$. Using $D^2(D-1)$ to annihomorphic term of e^x we find $y_p = Ax^3 + Bx^4 + Cxe^x$. Substituting y_p into the differential equation we be

180

 $-6A + 24B) - 24Bx + Ce^x = x + e^x$. Thus A = -1/6, B = -1/24, and C = 1, and

$$y = c_1 + c_2 x + c_3 x^2 + c_4 e^x - \frac{1}{6} x^3 - \frac{1}{24} x^4 + x e^x$$
$$y' = c_2 + 2c_3 x + c_4 e^x - \frac{1}{2} x^2 - \frac{1}{6} x^3 + e^x + x e^x$$
$$y'' = 2c_3 + c_4 e^x - x - \frac{1}{2} x^2 + 2e^x + x e^x.$$
$$y''' = c_4 e^x - 1 - x + 3e^x + x e^x$$

The initial conditions imply

$$c_1 + c_4 = 0$$

 $c_2 + c_4 + 1 = 0$
 $2c_3 + c_4 + 2 = 0$
 $2 + c_4 = 0.$

Thus $c_1 = 2$, $c_2 = 1$, $c_3 = 0$, and $c_4 = -2$, and

$$y = 2 + x - 2e^x - \frac{1}{6}x^3 - \frac{1}{24}x^4 + xe^x.$$

To see in this case that the factors of L do not commute consider the operators (xD-1)(D+4)and (D+4)(xD-1). Applying the operators to the function x we find

$$(xD - 1)(D + 4)x = (xD^{2} + 4xD - D - 4)x$$
$$= xD^{2}x + 4xDx - Dx - 4x$$
$$= x(0) + 4x(1) - 1 - 4x = -1$$

 $\cdot nd$

$$(D+4)(xD-1)x = (D+4)(xDx-x)$$
$$= (D+4)(x \cdot 1 - x) = 0$$

Thus, the operators are not the same.

181

The particular solution, $y_p = u_1y_1 + u_2y_2$, in the following problems can take on a variety of especially where trigonometric functions are involved. The validity of a particular form can be checked by substituting it back into the differential equation.

1. The auxiliary equation is $m^2 + 1 = 0$, so $y_c = c_1 \cos x + c_2 \sin x$ and

$$W = \begin{vmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{vmatrix} = 1.$$

Identifying $f(x) = \sec x$ we obtain

$$u_1' = -\frac{\sin x \sec x}{1} = -\tan x$$
$$u_2' = \frac{\cos x \sec x}{1} = 1.$$

Then $u_1 = \ln |\cos x|, u_2 = x$, and

$$y = c_1 \cos x + c_2 \sin x + \cos x \ln |\cos x| + x \sin x.$$

2. The auxiliary equation is $m^2 + 1 = 0$, so $y_c = c_1 \cos x + c_2 \sin x$ and

$$W = \begin{vmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{vmatrix} = 1.$$

Identifying $f(x) = \tan x$ we obtain

$$u'_{1} = -\sin x \tan x = \frac{\cos^{2} x - 1}{\cos x} = \cos x - \sec x$$
$$u'_{2} = \sin x.$$

Then $u_1 = \sin x - \ln |\sec x + \tan x|, u_2 = -\cos x$, and

 $y = c_1 \cos x + c_2 \sin x + \cos x (\sin x - \ln |\sec x + \tan x|) - \cos x \sin x$

 $= c_1 \cos x + c_2 \sin x - \cos x \ln |\sec x + \tan x|.$

3. The auxiliary equation is $m^2 + 1 = 0$, so $y_c = c_1 \cos x + c_2 \sin x$ and

$$W = \begin{vmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{vmatrix} = 1.$$

182

Identifying $f(x) = \sin x$ we obtain

$$u_1' = -\sin^2 x$$
$$u_2' = \cos x \sin x.$$

Then

$$u_1 = \frac{1}{4}\sin 2x - \frac{1}{2}x = \frac{1}{2}\sin x \cos x - \frac{1}{2}x$$
$$u_2 = -\frac{1}{2}\cos^2 x.$$

and

$$y = c_1 \cos x + c_2 \sin x + \frac{1}{2} \sin x \cos^2 x - \frac{1}{2} x \cos x - \frac{1}{2} \cos^2 x \sin x$$
$$= c_1 \cos x + c_2 \sin x - \frac{1}{2} x \cos x.$$

4. The auxiliary equation is $m^2 + 1 = 0$, so $y_c = c_1 \cos x + c_2 \sin x$ and

$$W = \begin{vmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{vmatrix} = 1.$$

Identifying $f(x) = \sec x \tan x$ we obtain

$$u'_1 = -\sin x(\sec x \tan x) = -\tan^2 x = 1 - \sec^2 x$$
$$u'_2 = \cos x(\sec x \tan x) = \tan x.$$

Then $u_1 = x - \tan x$, $u_2 = -\ln |\cos x|$, and

$$y = c_1 \cos x + c_2 \sin x + x \cos x - \sin x - \sin x \ln |\cos x|$$

= $c_1 \cos x + c_3 \sin x + x \cos x - \sin x \ln |\cos x|$.

5. The auxiliary equation is $m^2 + 1 = 0$, so $y_c = c_1 \cos x + c_2 \sin x$ and

$$W = \begin{vmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{vmatrix} = 1.$$

Identifying $f(x) = \cos^2 x$ we obtain

$$u'_1 = -\sin x \cos^2 x$$
$$u'_2 = \cos^3 x = \cos x \left(1 - \sin^2 x\right).$$

183

Then $u_1 = \frac{1}{3}\cos^3 x$, $u_2 = \sin x - \frac{1}{3}\sin^3 x$, and $y = c_1\cos x + c_2\sin x + \frac{1}{3}\cos^4 x + \sin^2 x - \frac{1}{3}\sin^4 x$ $= c_1\cos x + c_2\sin x + \frac{1}{3}\left(\cos^2 x + \sin^2 x\right)\left(\cos^2 x - \sin^2 x\right) + \sin^2 x$ $= c_1\cos x + c_2\sin x + \frac{1}{3}\cos^2 x + \frac{2}{3}\sin^2 x$ $= c_1\cos x + c_2\sin x + \frac{1}{3} + \frac{1}{3}\sin^2 x.$

6. The auxiliary equation is $m^2 + 1 = 0$, so $y_c = c_1 \cos x + c_2 \sin x$ and

$$W = \begin{vmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{vmatrix} = 1.$$

Identifying $f(x) = \sec^2 x$ we obtain

$$u_1' = -\frac{\sin x}{\cos^2 x}$$

 $u_2' = \sec x.$

Then

$$u_1 = -\frac{1}{\cos x} = -\sec x$$
$$u_2 = \ln|\sec x + \tan x|$$

and

$$y = c_1 \cos x + c_2 \sin x - \cos x \sec x + \sin x \ln |\sec x + \tan x|$$

 $= c_1 \cos x + c_2 \sin x - 1 + \sin x \ln |\sec x + \tan x|.$

7. The auxiliary equation is $m^2 - 1 = 0$, so $y_c = c_1 e^x + c_2 e^{-x}$ and $W = \begin{vmatrix} e^x & e^{-x} \\ e^x & -e^{-x} \end{vmatrix} = -2.$

Identifying $f(x) = \cosh x = \frac{1}{2}(e^{-x} + e^x)$ we obtain

 $u_1' = \frac{1}{4}e^{-2x} + \frac{1}{4}$ $u_2' = -\frac{1}{4} - \frac{1}{4}e^{2x}.$ $u_1 = -\frac{1}{8}e^{-2x} + \frac{1}{4}x$

Then

 $u_2 = -\frac{1}{2}e^{2x} - \frac{1}{4}x$

 And

$$y = c_1 e^x + c_2 e^{-x} - \frac{1}{8} e^{-x} + \frac{1}{4} x e^x - \frac{1}{8} e^x - \frac{1}{4} x e^{-x}$$
$$= c_3 e^x + c_4 e^{-x} + \frac{1}{4} x (e^x - e^{-x})$$
$$= c_3 e^x + c_4 e^{-x} + \frac{1}{2} x \sinh x.$$

• The auxiliary equation is $m^2 - 1 = 0$, so $y_c = c_1 e^x + c_2 e^{-x}$ and $W = \begin{vmatrix} e^x & e^{-x} \\ e^x & e^{-x} \end{vmatrix} = -2.$

$$W = \begin{vmatrix} e^x & e^{-x} \end{vmatrix} = -2.$$

Eientifying $f(x) = \sinh 2x$ we obtain

$$u_1' = -\frac{1}{4}e^{-3x} + \frac{1}{4}e^x$$
$$u_2' = \frac{1}{4}e^{-x} - \frac{1}{4}e^{3x}.$$

Then

$$u_1 = \frac{1}{12}e^{-3x} + \frac{1}{4}e^x$$
$$u_2 = -\frac{1}{4}e^{-x} - \frac{1}{12}e^{3x}.$$

end

$$y = c_1 e^x + c_2 e^{-x} + \frac{1}{12} e^{-2x} + \frac{1}{4} e^{2x} - \frac{1}{4} e^{-2x} - \frac{1}{12} e^{2x}$$
$$= c_1 e^x + c_2 e^{-x} + \frac{1}{6} \left(e^{2x} - e^{-2x} \right)$$
$$= c_1 e^x + c_2 e^{-x} + \frac{1}{3} \sinh 2x.$$

For auxiliary equation is $m^2 - 4 = 0$, so $y_c = c_1 e^{2x} + c_2 e^{-2x}$ and $W = \begin{vmatrix} e^{2x} & e^{-2x} \\ 2e^{2x} & -2e^{-2x} \end{vmatrix} = -4.$

Elentifying $f(x) = e^{2x}/x$ we obtain $u'_1 = 1/4x$ and $u'_2 = -e^{4x}/4x$. Then

$$u_1 = \frac{1}{4} \ln |x|,$$
$$u_2 = -\frac{1}{4} \int_{x_0}^x \frac{e^{4t}}{t} dt$$

 ± 1

$$y = c_1 e^{2x} + c_2 e^{-2x} + \frac{1}{4} \left(e^{2x} \ln|x| - e^{-2x} \int_{x_0}^x \frac{e^{4t}}{t} dt \right), \qquad x_0 > 0.$$

10. The auxiliary equation is $m^2 - 9 = 0$, so $y_c = c_1 e^{3x} + c_2 e^{-3x}$ and

$$W = \begin{vmatrix} e^{3x} & e^{-3x} \\ 3e^{3x} & -3e^{-3x} \end{vmatrix} = -6.$$

Identifying $f(x) = 9x/e^{3x}$ we obtain $u'_1 = \frac{3}{2}xe^{-6x}$ and $u'_2 = -\frac{3}{2}x$. Then

$$u_1 = -\frac{1}{24}e^{-6x} - \frac{1}{4}xe^{-6x},$$

$$u_2 = -\frac{3}{4}x^2$$

and

$$y = c_1 e^{3x} + c_2 e^{-3x} - \frac{1}{24} e^{-3x} - \frac{1}{4} x e^{-3x} - \frac{3}{4} x^2 e^{-3x}$$
$$= c_1 e^{3x} + c_3 e^{-3x} - \frac{1}{4} x e^{-3x} (1 - 3x).$$

11. The auxiliary equation is $m^2 + 3m + 2 = (m+1)(m+2) = 0$, so $y_c = c_1 e^{-x} + c_2 e^{-2x}$ and

$$W = \begin{vmatrix} e^{-x} & e^{-2x} \\ -e^{-x} & -2e^{-2x} \end{vmatrix} = -e^{-3x}.$$

Identifying $f(x) = 1/(1 + e^x)$ we obtain

$$u'_{1} = \frac{e^{x}}{1 + e^{x}}$$
$$u'_{2} = -\frac{e^{2x}}{1 + e^{x}} = \frac{e^{x}}{1 + e^{x}} - e^{x}.$$

Then $u_1 = \ln(1 + e^x)$, $u_2 = \ln(1 + e^x) - e^x$, and

$$y = c_1 e^{-x} + c_2 e^{-2x} + e^{-x} \ln(1 + e^x) + e^{-2x} \ln(1 + e^x) - e^{-x}$$
$$= c_3 e^{-x} + c_2 e^{-2x} + (1 + e^{-x}) e^{-x} \ln(1 + e^x).$$

12. The auxiliary equation is $m^2 - 2m + 1 = (m-1)^2 = 0$, so $y_c = c_1 e^x + c_2 x e^x$ and

$$W = \begin{vmatrix} e^x & xe^x \\ e^x & xe^x + e^x \end{vmatrix} = e^{2x}.$$

Identifying $f(x) = e^x / (1 + x^2)$ we obtain

$$u_1' = -\frac{xe^x e^x}{e^{2x} (1+x^2)} = -\frac{x}{1+x^2}$$
$$u_2' = \frac{e^x e^x}{e^{2x} (1+x^2)} = \frac{1}{1+x^2}.$$

186

Then $u_1 = -\frac{1}{2} \ln (1 + x^2)$, $u_2 = \tan^{-1} x$, and

$$y = c_1 e^x + c_2 x e^x - \frac{1}{2} e^x \ln\left(1 + x^2\right) + x e^x \tan^{-1} x$$

13. The auxiliary equation is $m^2 + 3m + 2 = (m+1)(m+2) = 0$, so $y_c = c_1 e^{-x} + c_2 e^{-2x}$ and

$$W = \begin{vmatrix} e^{-x} & e^{-2x} \\ -e^{-x} & -2e^{-2x} \end{vmatrix} = -e^{-3x}.$$

Identifying $f(x) = \sin e^x$ we obtain

$$u_1' = \frac{e^{-2x}\sin e^x}{e^{-3x}} = e^x \sin e^x$$

$$u_2' = \frac{e^{-x}\sin e^x}{-e^{-3x}} = -e^{2x}\sin e^x.$$

Then $u_1 = -\cos e^x$, $u_2 = e^x \cos e^x - \sin e^x$, and

$$y = c_1 e^{-x} + c_2 e^{-2x} - e^{-x} \cos e^x + e^{-x} \cos e^x - e^{-2x} \sin e^x$$
$$= c_1 e^{-x} + c_2 e^{-2x} - e^{-2x} \sin e^x.$$

14. The auxiliary equation is $m^2 - 2m + 1 = (m - 1)^2 = 0$, so $y_c = c_1 e^t + c_2 t e^t$ and $W = \begin{vmatrix} e^t & t e^t \\ e^t & t e^t + e^t \end{vmatrix} = e^{2t}.$

Elentifying $f(t) = e^t \tan^{-1} t$ we obtain

$$u_1' = -\frac{te^t e^t \tan^{-1} t}{e^{2t}} = -t \tan^{-1} t$$

$$u_2' = \frac{e^t e^t \tan^{-1} t}{e^{2t}} = \tan^{-1} t.$$

Then

$$u_1 = -\frac{1+t^2}{2} \tan^{-1} t + \frac{t}{2}$$
$$u_2 = t \tan^{-1} t - \frac{1}{2} \ln \left(1 + t^2\right)$$

-nd

$$y = c_1 e^t + c_2 t e^t + \left(-\frac{1+t^2}{2} \tan^{-1} t + \frac{t}{2}\right) e^t + \left(t \tan^{-1} t - \frac{1}{2} \ln\left(1+t^2\right)\right) t e^t$$

$$= c_1 e^t + c_3 t e^t + \frac{1}{2} e^t \left[\left(t^2 - 1 \right) \tan^{-1} t - \ln \left(1 + t^2 \right) \right].$$

The auxiliary equation is $m^2 + 2m + 1 = (m+1)^2 = 0$, so $y_c = c_1 e^{-t} + c_2 t e^{-t}$ and $W = \begin{vmatrix} e^{-t} & t e^{-t} \\ -e^{-t} & -t e^{-t} + e^{-t} \end{vmatrix} = e^{-2t}.$

Identifying $f(t) = e^{-t} \ln t$ we obtain

$$u_{1}' = -\frac{te^{-t}e^{-t}\ln t}{e^{-2t}} = -t\ln t$$
$$u_{2}' = \frac{e^{-t}e^{-t}\ln t}{e^{-2t}} = \ln t.$$

Then

$$u_{1} = -\frac{1}{2}t^{2}\ln t + \frac{1}{4}t^{2}$$
$$u_{2} = t\ln t - t$$

and

$$y = c_1 e^{-t} + c_2 t e^{-t} - \frac{1}{2} t^2 e^{-t} \ln t + \frac{1}{4} t^2 e^{-t} + t^2 e^{-t} \ln t - t^2 e^{-t}$$
$$= c_1 e^{-t} + c_2 t e^{-t} + \frac{1}{2} t^2 e^{-t} \ln t - \frac{3}{4} t^2 e^{-t}.$$

16. The auxiliary equation is $2m^2 + 2m + 1 = 0$, so $y_c = e^{-x/2}[c_1 \cos(x/2) + c_2 \sin(x/2)]$ and

$$W = \begin{vmatrix} e^{-x/2}\cos\frac{x}{2} & e^{-x/2}\sin\frac{x}{2} \\ -\frac{1}{2}e^{-x/2}\cos\frac{x}{2} - \frac{1}{2}e^{-x/2}\sin\frac{x}{2} & \frac{1}{2}e^{-x/2}\cos\frac{x}{2} - \frac{1}{2}e^{x/2}\sin\frac{x}{2} \end{vmatrix} = \frac{1}{2}e^{-x}.$$

Identifying $f(x) = 2\sqrt{x}$ we obtain

$$u_1' = -\frac{e^{-x/2}\sin(x/2)2\sqrt{x}}{e^{-x/2}} = -4e^{x/2}\sqrt{x}\sin\frac{x}{2}$$
$$u_2' = -\frac{e^{-x/2}\cos(x/2)2\sqrt{x}}{e^{-x/2}} = 4e^{x/2}\sqrt{x}\cos\frac{x}{2}.$$

Then

$$u_{1} = -4 \int_{x_{0}}^{x} e^{t/2} \sqrt{t} \sin \frac{t}{2} dt$$
$$u_{2} = 4 \int_{x_{0}}^{x} e^{t/2} \sqrt{t} \cos \frac{t}{2} dt$$

and

$$y = e^{-x/2} \left(c_1 \cos \frac{x}{2} + c_2 \sin \frac{x}{2} \right) - 4e^{-x/2} \cos \frac{x}{2} \int_{x_0}^x e^{t/2} \sqrt{t} \sin \frac{t}{2} dt + 4e^{-x/2} \sin \frac{x}{2} \int_{x_0}^x e^{t/2} \sqrt{t} \cos \frac{x}{2} \int_{x_0}^x e^{t/2} \sqrt{t} \sin \frac{t}{2} dt + 4e^{-x/2} \sin \frac{x}{2} \int_{x_0}^x e^{t/2} \sqrt{t} \cos \frac{x}{2} \int_{x_0}^x e^{t/2} \sqrt{t} \sin \frac{t}{2} dt + 4e^{-x/2} \sin \frac{x}{2} \int_{x_0}^x e^{t/2} \sqrt{t} \cos \frac{x}{2} \int_{x_0}^x e^{t/2} \sqrt{t} \sin \frac{t}{2} dt + 4e^{-x/2} \sin \frac{x}{2} \int_{x_0}^x e^{t/2} \sqrt{t} \cos \frac{x}{2} \int_{x_0}^x e^{t/2} \sqrt{t} \sin \frac{t}{2} dt + 4e^{-x/2} \sin \frac{x}{2} \int_{x_0}^x e^{t/2} \sqrt{t} \cos \frac{x}{2} \int_{x_0}^x e^{t/2} \sqrt{t} \sin \frac{x}{2}$$

17. The auxiliary equation is $3m^2 - 6m + 6 = 0$, so $y_c = e^x(c_1 \cos x + c_2 \sin x)$ and

$$W = \begin{vmatrix} e^x \cos x & e^x \sin x \\ e^x \cos x - e^x \sin x & e^x \cos x + e^x \sin x \end{vmatrix} = e^{2x}.$$

188

Identifying $f(x) = \frac{1}{3}e^x \sec x$ we obtain

$$u_1' = -\frac{(e^x \sin x)(e^x \sec x)/3}{e^{2x}} = -\frac{1}{3} \tan x$$
$$u_2' = \frac{(e^x \cos x)(e^x \sec x)/3}{e^{2x}} = \frac{1}{3}.$$

Then $u_1 = \frac{1}{3} \ln(\cos x), \ u_2 = \frac{1}{3}x$, and

$$y = c_1 e^x \cos x + c_2 e^x \sin x + \frac{1}{3} \ln(\cos x) e^x \cos x + \frac{1}{3} x e^x \sin x$$

15. The auxiliary equation is $4m^2 - 4m + 1 = (2m - 1)^2 = 0$, so $y_c = c_1 e^{x/2} + c_2 x e^{x/2}$ and

$$W = \begin{vmatrix} e^{x/2} & xe^{x/2} \\ \frac{1}{2}e^{x/2} & \frac{1}{2}xe^{x/2} + e^{x/2} \end{vmatrix} = e^x.$$

Identifying $f(x) = \frac{1}{4}e^{x/2}\sqrt{1-x^2}$ we obtain

$$u_1' = -\frac{xe^{x/2}e^{x/2}\sqrt{1-x^2}}{4e^x} = -\frac{1}{4}x\sqrt{1-x^2}$$
$$u_2' = \frac{e^{x/2}e^{x/2}\sqrt{1-x^2}}{4e^x} = \frac{1}{4}\sqrt{1-x^2}.$$

To find u_1 and u_2 we use the substitution $v = 1 - x^2$ and the trig substitution $x = \sin \theta$, respectively:

$$u_{1} = \frac{1}{12} \left(1 - x^{2}\right)^{3/2}$$
$$u_{2} = \frac{x}{8}\sqrt{1 - x^{2}} + \frac{1}{8}\sin^{-1}$$

Thus

$$y = c_1 e^{x/2} + c_2 x e^{x/2} + \frac{1}{12} e^{x/2} \left(1 - x^2\right)^{3/2} + \frac{1}{8} x^2 e^{x/2} \sqrt{1 - x^2} + \frac{1}{8} x e^{x/2} \sin^{-1} x$$

x.

13. The auxiliary equation is $4m^2 - 1 = (2m - 1)(2m + 1) = 0$, so $y_c = c_1 e^{x/2} + c_2 e^{-x/2}$ and $W = \begin{vmatrix} e^{x/2} & e^{-x/2} \\ \frac{1}{2}e^{x/2} & -\frac{1}{2}e^{-x/2} \end{vmatrix} = -1.$

Identifying $f(x) = xe^{x/2}/4$ we obtain $u'_1 = x/4$ and $u'_2 = -xe^x/4$. Then $u_1 = x^2/8$ and $u_2 = -xe^x/4 + e^x/4$. Thus

$$y = c_1 e^{x/2} + c_2 e^{-x/2} + \frac{1}{8} x^2 e^{x/2} - \frac{1}{4} x e^{x/2} + \frac{1}{4} e^{x/2}$$
$$= c_3 e^{x/2} + c_2 e^{-x/2} + \frac{1}{8} x^2 e^{x/2} - \frac{1}{4} x e^{x/2}$$

 And

$$y' = \frac{1}{2}c_3e^{x/2} - \frac{1}{2}c_2e^{-x/2} + \frac{1}{16}x^2e^{x/2} + \frac{1}{8}xe^{x/2} - \frac{1}{4}e^{x/2}.$$

The initial conditions imply

$$c_3 + c_2 = 1$$

 $\frac{1}{2}c_3 - \frac{1}{2}c_2 - \frac{1}{4} = 0.$

Thus $c_3 = 3/4$ and $c_2 = 1/4$, and

$$y = \frac{3}{4}e^{x/2} + \frac{1}{4}e^{-x/2} + \frac{1}{8}x^2e^{x/2} - \frac{1}{4}xe^{x/2}.$$

20. The auxiliary equation is $2m^2 + m - 1 = (2m - 1)(m + 1) = 0$, so $y_c = c_1 e^{x/2} + c_2 e^{-x}$ and

$$W = \begin{vmatrix} e^{x/2} & e^{-x} \\ \frac{1}{2}e^{x/2} & -e^{-x} \end{vmatrix} = -\frac{3}{2}e^{-x/2}.$$

Identifying f(x) = (x+1)/2 we obtain

$$u_1' = \frac{1}{3}e^{-x/2}(x+1)$$
$$u_2' = -\frac{1}{3}e^x(x+1).$$

Then

$$u_{1} = -e^{-x/2} \left(\frac{2}{3}x - 2\right)$$
$$u_{2} = -\frac{1}{3}xe^{x}.$$

Thus

$$y = c_1 e^{x/2} + c_2 e^{-x} - x - 2$$

and

$$y' = \frac{1}{2}c_1e^{x/2} - c_2e^{-x} - 1.$$

The initial conditions imply

$$c_1 - c_2 - 2 = 1$$
$$\frac{1}{2}c_1 - c_2 - 1 = 0.$$

Thus $c_1 = 8/3$ and $c_2 = 1/3$, and

$$y = \frac{8}{3}e^{x/2} + \frac{1}{3}e^{-x} - x - 2.$$

21. The auxiliary equation is $m^2 + 2m - 8 = (m - 2)(m + 4) = 0$, so $y_c = c_1 e^{2x} + c_2 e^{-4x}$ and $W = \begin{vmatrix} e^{2x} & e^{-4x} \\ 2e^{2x} & -4e^{-4x} \end{vmatrix} = -6e^{-2x}.$

190

Identifying $f(x) = 2e^{-2x} - e^{-x}$ we obtain

$$u_1' = \frac{1}{3}e^{-4x} - \frac{1}{6}e^{-3x}$$
$$u_2' = \frac{1}{6}e^{3x} - \frac{1}{3}e^{2x}.$$

Then

$$u_1 = -\frac{1}{12}e^{-4x} + \frac{1}{18}e^{-3x}$$
$$u_2 = \frac{1}{18}e^{3x} - \frac{1}{6}e^{2x}.$$

Thus

$$y = c_1 e^{2x} + c_2 e^{-4x} - \frac{1}{12} e^{-2x} + \frac{1}{18} e^{-x} + \frac{1}{18} e^{-x} - \frac{1}{6} e^{-2x}$$
$$= c_1 e^{2x} + c_2 e^{-4x} - \frac{1}{4} e^{-2x} + \frac{1}{9} e^{-x}$$

-nd

$$y' = 2c_1e^{2x} - 4c_2e^{-4x} + \frac{1}{2}e^{-2x} - \frac{1}{9}e^{-x}.$$

The initial conditions imply

$$c_1 + c_2 - \frac{5}{36} = 1$$
$$2c_1 - 4c_2 + \frac{7}{18} = 0.$$

Thus $c_1 = 25/36$ and $c_2 = 4/9$, and

$$y = \frac{25}{36}e^{2x} + \frac{4}{9}e^{-4x} - \frac{1}{4}e^{-2x} + \frac{1}{9}e^{-x}.$$

The auxiliary equation is $m^2 - 4m + 4 = (m - 2)^2 = 0$, so $y_c = c_1 e^{2x} + c_2 x e^{2x}$ and

$$W = \begin{vmatrix} e^{2x} & xe^{2x} \\ 2e^{2x} & 2xe^{2x} + e^{2x} \end{vmatrix} = e^{4x}.$$

Hentifying $f(x) = (12x^2 - 6x)e^{2x}$ we obtain

$$u'_1 = 6x^2 - 12x^3$$

 $u'_2 = 12x^2 - 6x.$

 $u_1 = 2x^3 - 3x^4$

 $u_2 = 4x^3 - 3x^2$.

Then

Thus

$$y = c_1 e^{2x} + c_2 x e^{2x} + (2x^3 - 3x^4) e^{2x} + (4x^3 - 3x^2) x e^{2x}$$
$$= c_1 e^{2x} + c_2 x e^{2x} + e^{2x} (x^4 - x^3)$$

and

$$y' = 2c_1e^{2x} + c_2\left(2xe^{2x} + e^{2x}\right) + e^{2x}\left(4x^3 - 3x^2\right) + 2e^{2x}\left(x^4 - x^3\right).$$

The initial conditions imply

 $c_1 = 1$ $2c_1 + c_2 = 0.$

Thus $c_1 = 1$ and $c_2 = -2$, and

$$y = e^{2x} - 2xe^{2x} + e^{2x}\left(x^4 - x^3\right) = e^{2x}\left(x^4 - x^3 - 2x + 1\right).$$

23. Write the equation in the form

$$y'' + \frac{1}{x}y' + \left(1 - \frac{1}{4x^2}\right)y = x^{-1/2}$$

and identify $f(x) = x^{-1/2}$. From $y_1 = x^{-1/2} \cos x$ and $y_2 = x^{-1/2} \sin x$ we compute

$$W(y_1, y_2) = \begin{vmatrix} x^{-1/2} \cos x & x^{-1/2} \sin x \\ -x^{-1/2} \sin x - \frac{1}{2} x^{-3/2} \cos x & x^{-1/2} \cos x - \frac{1}{2} x^{-3/2} \sin x \end{vmatrix} = \frac{1}{x}$$

Now

$$u_1' = -\sin x \quad \text{so} \quad u_1 = \cos x,$$

and

$$u_2' = \cos x$$
 so $u_2 = \sin x$.

Thus a particular solution is

$$y_p = x^{-1/2} \cos^2 x + x^{-1/2} \sin^2 x,$$

and the general solution is

$$y = c_1 x^{-1/2} \cos x + c_2 x^{-1/2} \sin x + x^{-1/2} \cos^2 x + x^{-1/2} \sin^2 x$$
$$= c_1 x^{-1/2} \cos x + c_2 x^{-1/2} \sin x + x^{-1/2}.$$

24. Write the equation in the form

$$y'' + \frac{1}{x}y' + \frac{1}{x^2}y = \frac{\sec(\ln x)}{x^2}$$

and identify $f(x) = \sec(\ln x)/x^2$. From $y_1 = \cos(\ln x)$ and $y_2 = \sin(\ln x)$ we compute

$$W = \begin{vmatrix} \cos(\ln x) & \sin(\ln x) \\ -\frac{\sin(\ln x)}{x} & \frac{\cos(\ln x)}{x} \end{vmatrix} = \frac{1}{x}.$$

192

Now

$$u'_{1} = -\frac{\tan(\ln x)}{x}$$
 so $u_{1} = \ln|\cos(\ln x)|,$

and

$$u_2' = \frac{1}{x} \quad \text{so} \quad u_2 = \ln x.$$

Thus, a particular solution is

$$y_p = \cos(\ln x) \ln |\cos(\ln x)| + (\ln x) \sin(\ln x),$$

and the general solution is

$$y = c_1 \cos(\ln x) + c_2 \sin(\ln x) + \cos(\ln x) \ln |\cos(\ln x)| + (\ln x) \sin(\ln x).$$

15. The auxiliary equation is
$$m^3 + m = m(m^2 + 1) = 0$$
, so $y_c = c_1 + c_2 \cos x + c_3 \sin x$ and

$$W = \begin{vmatrix} 1 & \cos x & \sin x \\ 0 & -\sin x & \cos x \\ 0 & -\cos x & -\sin x \end{vmatrix} = 1.$$

Identifying $f(x) = \tan x$ we obtain

$$u_{1}' = W_{1} = \begin{vmatrix} 0 & \cos x & \sin x \\ 0 & -\sin x & \cos x \\ \tan x & -\cos x & -\sin x \end{vmatrix} = \tan x$$
$$u_{2}' = W_{2} = \begin{vmatrix} 1 & 0 & \sin x \\ 0 & \cos x \\ 0 & \cos x \\ 0 & \tan x & -\sin x \end{vmatrix} = -\sin x$$
$$u_{3}' = W_{3} = \begin{vmatrix} 1 & \cos x & 0 \\ 0 & -\sin x & 0 \\ 0 & -\cos x & \tan x \end{vmatrix} = -\sin x \tan x = \frac{\cos^{2} x - 1}{\cos x} = \cos x - \sec x.$$

Then

$$u_1 = -\ln |\cos x|$$
$$u_2 = \cos x$$
$$u_3 = \sin x - \ln |\sec x + \tan x|$$

and

$$y = c_1 + c_2 \cos x + c_3 \sin x - \ln |\cos x| + \cos^2 x$$
$$+ \sin^2 x - \sin x \ln |\sec x + \tan x|$$
$$= c_4 + c_2 \cos x + c_3 \sin x - \ln |\cos x| - \sin x \ln |\sec x + \tan x|$$

193

for $-\pi/2 < x < \pi/2$.

26. The auxiliary equation is $m^3 + 4m = m(m^2 + 4) = 0$, so $y_c = c_1 + c_2 \cos 2x + c_3 \sin 2x$ and

$$W = \begin{vmatrix} 1 & \cos 2x & \sin 2x \\ 0 & -2\sin 2x & 2\cos 2x \\ 0 & -4\cos 2x & -4\sin 2x \end{vmatrix} = 8.$$

Identifying $f(x) = \sec 2x$ we obtain

$$\begin{aligned} u_1' &= \frac{1}{8}W_1 = \frac{1}{8} \begin{vmatrix} 0 & \cos 2x & \sin 2x \\ 0 & -2\sin 2x & 2\cos 2x \\ \sec 2x & -4\cos 2x & -4\sin 2x \end{vmatrix} = \frac{1}{4}\sec 2x \\ u_2' &= \frac{1}{8}W_2 = \frac{1}{8} \begin{vmatrix} 1 & 0 & \sin 2x \\ 0 & 0 & 2\cos 2x \\ 0 & \sec 2x & -4\sin 2x \end{vmatrix} = -\frac{1}{4} \\ u_3' &= \frac{1}{8}W_3 = \frac{1}{8} \begin{vmatrix} 1 & \cos 2x & 0 \\ 0 & -2\sin 2x & 0 \\ 0 & -4\cos 2x & \sec 2x \end{vmatrix} = -\frac{1}{4}\tan 2x. \end{aligned}$$

Then

$$u_1 = \frac{1}{8} \ln |\sec 2x + \tan 2x|$$
$$u_2 = -\frac{1}{4}x$$
$$u_3 = \frac{1}{8} \ln |\cos 2x|$$

and

$$y = c_1 + c_2 \cos 2x + c_3 \sin 2x + \frac{1}{8} \ln|\sec 2x + \tan 2x| - \frac{1}{4}x \cos 2x + \frac{1}{8} \sin 2x \ln|\cos 2x|$$
 for $-\pi/4 < x < \pi/4$.

27. The auxiliary equation is $3m^2 - 6m + 30 = 0$, which has roots $1 \pm 3i$, so $y_c = e^x(c_1 \cos 3x + c_2 \sin 3x)$. We consider first the differential equation $3y'' - 6y' + 30y = 15 \sin x$, which can be solve undetermined coefficients. Letting $y_{p_1} = A \cos x + B \sin x$ and substituting into the difference equation we get

$$(27A - 6B)\cos x + (6A + 27B)\sin x = 15\sin x.$$

Then

$$27A - 6B = 0$$
 and $6A + 27B = 15$,

194

so $A = \frac{2}{17}$ and $B = \frac{9}{17}$. Thus, $y_{p_1} = \frac{2}{17} \cos x + \frac{9}{17} \sin x$. Next, we consider the differential equation 5y'' - 6y' + 30y, for which a particular solution y_{p_2} can be found using variation of parameters. The Wronskian is

$$W = \begin{vmatrix} e^x \cos 3x & e^x \sin 3x \\ e^x \cos 3x - 3e^x \sin 3x & 3e^x \cos 3x + e^x \sin 3x \end{vmatrix} = 3e^{2x}.$$

Eigentifying $f(x) = \frac{1}{3}e^x \tan x$ we obtain

$$u_1' = -\frac{1}{9}\sin 3x \, \tan 3x = -\frac{1}{9}\left(\frac{\sin^2 3x}{\cos 3x}\right) = -\frac{1}{9}\left(\frac{1-\cos^2 3x}{\cos 3x}\right) = -\frac{1}{9}(\sec 3x - \cos 3x)$$

30

$$u_1 = -\frac{1}{27} \ln|\sec 3x + \tan 3x| + \frac{1}{27} \sin 3x.$$

Next

$$u_2' = \frac{1}{9}\sin 3x$$
 so $u_2 = -\frac{1}{27}\cos 3x$.

Thus

$$y_{p_2} = -\frac{1}{27}e^x \cos 3x(\ln|\sec 3x + \tan 3x| - \sin 3x) - \frac{1}{27}e^x \sin 3x \cos 3x$$
$$= -\frac{1}{27}e^x(\cos 3x)\ln|\sec 3x + \tan 3x|$$

and the general solution of the original differential equation is

$$y = e^{x}(c_1 \cos 3x + c_2 \sin 3x) + y_{p_1}(x) + y_{p_2}(x).$$

The auxiliary equation is $m^2 - 2m + 1 = (m-1)^2 = 0$, which has repeated root 1, so $y_c = c_1 c^x + c_2 x e^x$. We consider first the differential equation $y'' - 2y' + y = 4x^2 - 3$, which can be solved using undetermined coefficients. Letting $y_{p_1} = Ax^2 + Bx + C$ and substituting into the differential equation we get

$$Ax^{2} + (-4A + B)x + (2A - 2B + C) = 4x^{2} - 3.$$

Then

A = 4, -4A + B = 0, and 2A - 2B + C = -3,

 $\Rightarrow A = 4, B = 16$, and C = 21. Thus, $y_{p_1} = 4x^2 + 16x + 21$. Next we consider the differential equation $y'' - 2y' + y = x^{-1}e^x$, for which a particular solution y_{p_2} can be found using variation of parameters. The Wronskian is

$$W = \begin{vmatrix} e^x & xe^x \\ e^x & xe^x + e^x \end{vmatrix} = e^{2x}.$$

Identifying $f(x) = e^x/x$ we obtain $u'_1 = -1$ and $u'_2 = 1/x$. Then $u_1 = -x$ and $u_2 = \ln x$, so that

$$y_{p_2} = -xe^x + xe^x \ln x,$$

195

and the general solution of the original differential equation is

$$y = y_c + y_{p_1} + y_{p_2} = c_1 e^x + c_2 x e^x + 4x^2 + 16x + 21 - x e^x + x e^x \ln x$$
$$= c_1 e^x + c_3 x e^x + 4x^2 + 16x + 21 + x e^x \ln x$$

29. The interval of definition for Problem 1 is $(-\pi/2, \pi/2)$, for Problem 7 is $(-\infty, \infty)$, for Proise $(0, \infty)$, and for Problem 18 is (-1, 1). In Problem 24 the general solution is

 $y = c_1 \cos(\ln x) + c_2 \sin(\ln x) + \cos(\ln x) \ln |\cos(\ln x)| + (\ln x) \sin(\ln x)$

for $-\pi/2 < \ln x < \pi/2$ or $e^{-\pi/2} < x < e^{\pi/2}$. The bounds on $\ln x$ are due to the presence of set in the differential equation.

30. We are given that $y_1 = x^2$ is a solution of $x^4y'' + x^3y' - 4x^2y = 0$. To find a second solution reduction of order. Let $y = x^2u(x)$. Then the product rule gives

$$y' = x^2u' + 2xu$$
 and $y'' = x^2u'' + 4xu' + 2u$,

 \mathbf{SO}

$$x^{4}y'' + x^{3}y' - 4x^{2}y = x^{5}(xu'' + 5u') = 0.$$

Letting w = u', this becomes xw' + 5w = 0. Separating variables and integrating we have

$$\frac{dw}{w} = -\frac{5}{x} dx \quad \text{and} \quad \ln|w| = -5\ln x + c.$$

Thus, $w = x^{-5}$ and $u = -\frac{1}{4}x^{-4}$. A second solution is then $y_2 = x^2x^{-4} = 1/x^2$, and the solution of the homogeneous differential equation is $y_c = c_1x^2 + c_2/x^2$. To find a particular solution y_p , we use variation of parameters. The Wronskian is

$$W = \begin{vmatrix} x^2 & 1/x^2 \\ 2x & -2/x^3 \end{vmatrix} = -\frac{4}{x}.$$

Identifying $f(x) = 1/x^4$ we obtain $u'_1 = \frac{1}{4}x^{-5}$ and $u'_2 = -\frac{1}{4}x^{-1}$. Then $u_1 = -\frac{1}{16}x^{-1}$. $u_2 = -\frac{1}{4}\ln x$, so

$$y_p = -\frac{1}{16}x^{-4}x^2 - \frac{1}{4}(\ln x)x^{-2} = -\frac{1}{16}x^{-2} - \frac{1}{4}x^{-2}\ln x.$$

The general solution is

$$y = c_1 x^2 + \frac{c_2}{x^2} - \frac{1}{16x^2} - \frac{1}{4x^2} \ln x$$

31. Suppose $y_p(x) = u_1(x)y_1(x) + u_2(x)y_2(x)$, where u_1 and u_2 are defined by (5) of Section 4.4

196

text. Then, for x and x_0 in I,

$$y_p(x) = y_1(x) \int_{x_0}^x \frac{-y_2(t)f(t)}{W(t)} dt + y_2(x) \int_{x_0}^x \frac{y_1(t)f(t)}{W(t)} dt$$
$$= \int_{x_0}^x \frac{-y_1(x)y_2(t)f(t)}{W(t)} dt + \int_{x_0}^x \frac{y_1(t)y_2(x)f(t)}{W(t)} dt$$
$$= \int_{x_0}^x \left[\frac{y_1(t)y_2(x)f(t)}{W(t)} + \frac{-y_1(x)y_2(t)f(t)}{W(t)} \right] dt$$
$$= \int_{x_0}^x \frac{y_1(t)y_2(x)f(t) - y_1(x)y_2(t)f(t)}{W(t)} dt$$
$$= \int_{x_0}^x \frac{y_1(t)y_2(x) - y_1(x)y_2(t)}{W(t)} f(t) dt$$
$$= \int_{x_0}^x G(x,t)f(t) dt.$$

11. In the solution of Example 3 in the text we saw that $y_1 = e^x$, $y_2 = e^{-x}$, f(x) = 1/x, and $W(y_1, y_2) = -2$. From (13) the Green's function for the differential equation is

$$G(x,t) = \frac{e^t e^{-x} - e^x e^{-t}}{-2} = \frac{e^{x-t} - e^{-(x-t)}}{2} = \sinh(x-t).$$

The general solution of the differential equation on any interval $[x_0, x]$ not containing the origin is then

$$y = c_1 e^x + c_2 e^{-x} + \int_{x_0}^x \frac{\sinh(x-t)}{t} dt.$$

We already know that $y_p(x)$ is a particular solution of the differential equation. We simply need to show that it satisfies the initial conditions. Certainly

$$y(x_0) = \int_{x_0}^{x_0} G(x,t)f(t)dt = 0.$$

Using Leibniz's rule for differentiation under an integral sign we have

$$y'_{p}(x) = \frac{d}{dx} \int_{x_{0}}^{x} G(x,t)f(t)dt = \int_{x_{0}}^{x} \frac{d}{dx}G(x,t)f(t)dt + f(t)G(x,x) \cdot 1 - f(t)G(x_{0},x) \cdot 0.$$

From (13) in the text, G(x, x) = 0 so

$$y'_p(x) = \frac{d}{dx} \int_{x_0}^x G(x,t) f(t) dt$$

.:11d

$$y'_p(x_0) = \frac{d}{dx} \int_{x_0}^{x_0} G(x, t) f(t) dt = 0.$$

197

34. From the solution of Problem 32 we have that a particular solution of the differential equation

$$y_p(x) = \int_0^x G(x,t)e^{2t}dt,$$

where $G(x,t) = \sinh(x-t)$. Then

$$y_p(x) = \int_0^x e^{2t} \sinh(x-t) dt = \int_0^x e^{2t} \frac{e^{x-t} - e^{-(x-t)}}{2} dt$$
$$= \frac{1}{2} \int_0^x \left[e^{x+t} - e^{-x+3t} \right] dt = \frac{1}{2} \left[e^{x+t} - \frac{1}{3} e^{-x+3t} \right] \Big|_0^x$$
$$= \frac{1}{2} e^{2x} - \frac{1}{6} e^{2x} - \frac{1}{2} e^x + \frac{1}{6} e^{-x} = \frac{1}{3} e^{2x} - \frac{1}{2} e^x + \frac{1}{6} e^{-x}$$

Exercises 4.7

Cauchy-Euler Equation

- 1. The auxiliary equation is $m^2 m 2 = (m+1)(m-2) = 0$ so that $y = c_1 x^{-1} + c_2 x^2$.
- 2. The auxiliary equation is $4m^2 4m + 1 = (2m 1)^2 = 0$ so that $y = c_1 x^{1/2} + c_2 x^{1/2} \ln x$.
- 3. The auxiliary equation is $m^2 = 0$ so that $y = c_1 + c_2 \ln x$.
- 4. The auxiliary equation is $m^2 4m = m(m-4) = 0$ so that $y = c_1 + c_2 x^4$.
- 5. The auxiliary equation is $m^2 + 4 = 0$ so that $y = c_1 \cos(2 \ln x) + c_2 \sin(2 \ln x)$.
- 6. The auxiliary equation is $m^2 + 4m + 3 = (m+1)(m+3) = 0$ so that $y = c_1 x^{-1} + c_2 x^{-3}$.
- 7. The auxiliary equation is $m^2 4m 2 = 0$ so that $y = c_1 x^{2-\sqrt{6}} + c_2 x^{2+\sqrt{6}}$.
- 8. The auxiliary equation is $m^2 + 2m 4 = 0$ so that $y = c_1 x^{-1 + \sqrt{5}} + c_2 x^{-1 \sqrt{5}}$.
- 9. The auxiliary equation is $25m^2 + 1 = 0$ so that $y = c_1 \cos\left(\frac{1}{5}\ln x\right) + c_2 \sin\left(\frac{1}{5}\ln x\right)$.
- 10. The auxiliary equation is $4m^2 1 = (2m 1)(2m + 1) = 0$ so that $y = c_1 x^{1/2} + c_2 x^{-1/2}$.
- 11. The auxiliary equation is $m^2 + 4m + 4 = (m+2)^2 = 0$ so that $y = c_1 x^{-2} + c_2 x^{-2} \ln x$.
- 12. The auxiliary equation is $m^2 + 7m + 6 = (m+1)(m+6) = 0$ so that $y = c_1 x^{-1} + c_2 x^{-6}$.
- 13. The auxiliary equation is $3m^2 + 3m + 1 = 0$ so that

$$y = x^{-1/2} \left[c_1 \cos\left(\frac{\sqrt{3}}{6}\ln x\right) + c_2 \sin\left(\frac{\sqrt{3}}{6}\ln x\right) \right].$$

14. The auxiliary equation is $m^2 - 8m + 41 = 0$ so that $y = x^4 [c_1 \cos(5 \ln x) + c_2 \sin(5 \ln x)].$

198

15. Assuming that $y = x^m$ and substituting into the differential equation we obtain

$$m(m-1)(m-2) - 6 = m^3 - 3m^2 + 2m - 6 = (m-3)(m^2 + 2) = 0.$$

Thus

$$y = c_1 x^3 + c_2 \cos\left(\sqrt{2}\ln x\right) + c_3 \sin\left(\sqrt{2}\ln x\right)$$

15. Assuming that $y = x^m$ and substituting into the differential equation we obtain

$$m(m-1)(m-2) + m - 1 = m^3 - 3m^2 + 3m - 1 = (m-1)^3 = 0$$

Thus

$$y = c_1 x + c_2 x \ln x + c_3 x (\ln x)^2$$
.

17. Assuming that $y = x^m$ and substituting into the differential equation we obtain

$$m(m-1)(m-2)(m-3) + 6m(m-1)(m-2) = m^4 - 7m^2 + 6m = m(m-1)(m-2)(m+3) = 0.$$

Thus

$$y = c_1 + c_2 x + c_3 x^2 + c_4 x^{-3}.$$

19. Assuming that $y = x^m$ and substituting into the differential equation we obtain

$$(m-1)(m-2)(m-3) + 6m(m-1)(m-2) + 9m(m-1) + 3m + 1 = m^4 + 2m^2 + 1 = (m^2 + 1)^2 = 0.$$
 Thus

$$y = c_1 \cos(\ln x) + c_2 \sin(\ln x) + c_3(\ln x) \cos(\ln x) + c_4(\ln x) \sin(\ln x).$$

The auxiliary equation is $m^2 - 5m = m(m-5) = 0$ so that $y_c = c_1 + c_2 x^5$ and

$$W(1, x^5) = \begin{vmatrix} 1 & x^5 \\ 0 & 5x^4 \end{vmatrix} = 5x^4.$$

Lientifying $f(x) = x^3$ we obtain $u'_1 = -\frac{1}{5}x^4$ and $u'_2 = 1/5x$. Then $u_1 = -\frac{1}{25}x^5$, $u_2 = \frac{1}{5}\ln x$, and

$$y = c_1 + c_2 x^5 - \frac{1}{25} x^5 + \frac{1}{5} x^5 \ln x = c_1 + c_3 x^5 + \frac{1}{5} x^5 \ln x.$$

The auxiliary equation is $2m^2 + 3m + 1 = (2m + 1)(m + 1) = 0$ so that $y_c = c_1 x^{-1} + c_2 x^{-1/2}$ and

$$W(x^{-1}, x^{-1/2}) = \begin{vmatrix} x^{-1} & x^{-1/2} \\ -x^{-2} & -\frac{1}{2}x^{-3/2} \end{vmatrix} = \frac{1}{2}x^{-5/2}$$

Example 1 for the formula of the formula $x_1 = x - x^2$ and $u_2 = x^{3/2} - x^{1/2}$. Then $u_1 = \frac{1}{2}x^2 - \frac{1}{3}x^3$, $y = c_1 x^{-1} + c_2 x^{-1/2} + \frac{1}{2}x - \frac{1}{3}x^2 + \frac{2}{5}x^2 - \frac{2}{3}x = c_1 x^{-1} + c_2 x^{-1/2} - \frac{1}{6}x + \frac{1}{15}x^2$.

Exercises 4.7 Cauchy-Euler Equation

21. The auxiliary equation is $m^2 - 2m + 1 = (m-1)^2 = 0$ so that $y_c = c_1 x + c_2 x \ln x$ and

$$W(x, x \ln x) = \begin{vmatrix} x & x \ln x \\ 1 & 1 + \ln x \end{vmatrix} = x$$

Lientifying f(x) = 2/x we obtain $u'_1 = -2 \ln x/x$ and $u'_2 = 2/x$. Then $u_1 = -(\ln x)^2$, $u_2 = 2 \ln x/x$ and

$$y = c_1 x + c_2 x \ln x - x(\ln x)^2 + 2x(\ln x)^2$$
$$= c_1 x + c_2 x \ln x + x(\ln x)^2, \qquad x > 0.$$

22. The auxiliary equation is $m^2 - 3m + 2 = (m-1)(m-2) = 0$ so that $y_c = c_1 x + c_2 x^2$ and

$$W(x, x^2) = \begin{vmatrix} x & x^2 \\ 1 & 2x \end{vmatrix} = x^2$$

Identifying $f(x) = x^2 e^x$ we obtain $u'_1 = -x^2 e^x$ and $u'_2 = x e^x$. Then $u_1 = -x^2 e^x + 2x e^x - 2x e^x - 2x e^x - 2x e^x - e^x$, and

$$y = c_1 x + c_2 x^2 - x^3 e^x + 2x^2 e^x - 2x e^x + x^3 e^x - x^2 e^x$$
$$= c_1 x + c_2 x^2 + x^2 e^x - 2x e^x.$$

23. The auxiliary equation $m(m-1) + m - 1 = m^2 - 1 = 0$ has roots $m_1 = -1$, $m_2 = 1$ $p = c_1 x^{-1} + c_2 x$. With $y_1 = x^{-1}$, $y_2 = x$, and the identification $f(x) = \ln x/x^2$, we get

$$W = 2x^{-1}$$
, $W_1 = -\ln x/x$, and $W_2 = \ln x/x^3$.

Then $u_1' = W_1/W = -(\ln x)/2$, $u_2' = W_2/W = (\ln x)/2x^2$, and integration by parts gives

$$u_1 = \frac{1}{2}x - \frac{1}{2}x\ln x$$
$$u_2 = -\frac{1}{2}x^{-1}\ln x - \frac{1}{2}x^{-1}$$

51

$$y_p = u_1 y_1 + u_2 y_2 = \left(\frac{1}{2}x - \frac{1}{2}x\ln x\right) x^{-1} + \left(-\frac{1}{2}x^{-1}\ln x - \frac{1}{2}x^{-1}\right) x = -\ln x$$

-nd

$$y = y_c + y_p = c_1 x^{-1} + c_2 x - \ln x, \qquad x > 0.$$

I.e. The auxiliary equation $m(m-1) + m - 1 = m^2 - 1 = 0$ has roots $m_1 = -1$, $m_2 = c_1 x^{-1} + c_2 x$. With $y_1 = x^{-1}$, $y_2 = x$, and the identification $f(x) = 1/x^2(x+1)$, we get

$$W = 2x^{-1}$$
, $W_1 = -1/x(x+1)$, and $W_2 = 1/x^3(x+1)$.

200

Then $u'_1 = W_1/W = -1/2(x+1)$, $u'_2 = W_2/W = 1/2x^2(x+1)$, and integration (by partial fractions for u'_2) gives

$$u_1 = -\frac{1}{2}\ln(x+1)$$

$$u_2 = -\frac{1}{2}x^{-1} - \frac{1}{2}\ln x + \frac{1}{2}\ln(x+1),$$

so

$$y_p = u_1 y_1 + u_2 y_2 = \left[-\frac{1}{2} \ln(x+1) \right] x^{-1} + \left[-\frac{1}{2} x^{-1} - \frac{1}{2} \ln x + \frac{1}{2} \ln(x+1) \right] x$$
$$= -\frac{1}{2} - \frac{1}{2} x \ln x + \frac{1}{2} x \ln(x+1) - \frac{\ln(x+1)}{2x} = -\frac{1}{2} + \frac{1}{2} x \ln\left(1 + \frac{1}{x}\right) - \frac{\ln(x+1)}{2x}$$

and

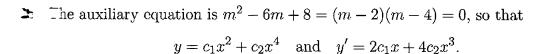
$$y = y_c + y_p = c_1 x^{-1} + c_2 x - \frac{1}{2} + \frac{1}{2} x \ln\left(1 + \frac{1}{x}\right) - \frac{\ln(x+1)}{2x}, \qquad x > 0.$$

 \therefore The auxiliary equation is $m^2 + 2m = m(m+2) = 0$, so that $y = c_1 + c_2 x^{-2}$ and $z' = -2c_2 x^{-3}$. The initial conditions imply

 $c_1 + c_2 = 0$

 $-2c_2 = 4.$

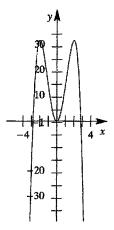
Thus, $c_1 = 2$, $c_2 = -2$, and $y = 2 - 2x^{-2}$. The graph is given to the right.



The initial conditions imply

$$4c_1 + 16c_2 = 32$$
$$4c_1 + 32c_2 = 0.$$

Thus, $c_1 = 16$, $c_2 = -2$, and $y = 16x^2 - 2x^4$. The graph is given to the right.



-10

-20

Exercises 4.7 Cauchy-Euler Equation

27. The auxiliary equation is $m^2 + 1 = 0$, so that

$$y = c_1 \cos(\ln x) + c_2 \sin(\ln x)$$

and

$$y' = -c_1 \frac{1}{x} \sin(\ln x) + c_2 \frac{1}{x} \cos(\ln x).$$

The initial conditions imply $c_1 = 1$ and $c_2 = 2$. Thus $y = \cos(\ln x) + 2\sin(\ln x)$. The graph is given to the right.

25. The auxiliary equation is $m^2 - 4m + 4 = (m-2)^2 = 0$, so that

$$y = c_1 x^2 + c_2 x^2 \ln x$$
 and $y' = 2c_1 x + c_2 (x + 2x \ln x)$.

The initial conditions imply $c_1 = 5$ and $c_2 + 10 = 3$. Thus $y = 5x^2 - 7x^2 \ln x$. The graph is given to the right.

29. The auxiliary equation is $m^2 = 0$ so that $y_c = c_1 + c_2 \ln x$ and

$$W(1, \ln x) = \begin{vmatrix} 1 & \ln x \\ 0 & 1/x \end{vmatrix} = \frac{1}{x}.$$

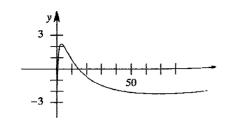
Identifying f(x) = 1 we obtain $u'_1 = -x \ln x$ and $u'_2 = x$. Then $u_1 = \frac{1}{4}x^2 - \frac{1}{2}x^2 \ln x$, $u_2 = \frac{1}{2}x^2$, and

$$y = c_1 + c_2 \ln x + \frac{1}{4}x^2 - \frac{1}{2}x^2 \ln x + \frac{1}{2}x^2 \ln x = c_1 + c_2 \ln x + \frac{1}{4}x^2$$

The initial conditions imply $c_1 + \frac{1}{4} = 1$ and $c_2 + \frac{1}{2} = -\frac{1}{2}$. Thus, $c_1 = \frac{3}{4}$, $c_2 = -1$, and $y = \frac{3}{4} - \ln x + \frac{1}{4}x^2$. The graph is given to the right.

30. The auxiliary equation is $m^2 - 6m + 8 = (m - 2)(m - 4) = 0$, so that $y_c = c_1 x^2 + c_2 x^4$ and $W = \begin{vmatrix} x^2 & x^4 \\ 2x & 4x^3 \end{vmatrix} = 2x^5.$

Identifying
$$f(x) = 8x^4$$
 we obtain $u'_1 = -4x^3$ and $u'_2 = 4x$. Then
 $u_1 = -x^4$, $u_2 = 2x^2$, and $y = c_1x^2 + c_2x^4 + x^6$. The initial conditions imply



-10

-20

~30

10

202

$$\frac{1}{4}c_1 + \frac{1}{16}c_2 = -\frac{1}{64}$$
$$c_1 + \frac{1}{2}c_2 = -\frac{3}{16}$$

Thus $c_1 = \frac{1}{16}$, $c_2 = -\frac{1}{2}$, and $y = \frac{1}{16}x^2 - \frac{1}{2}x^4 + x^6$. The graph is given above.

II. Substituting $x = e^t$ into the differential equation we obtain

$$\frac{d^2y}{dt^2} + 8\frac{dy}{dt} - 20y = 0.$$

The auxiliary equation is $m^2 + 8m - 20 = (m + 10)(m - 2) = 0$ so that

$$y = c_1 e^{-10t} + c_2 e^{2t} = c_1 x^{-10} + c_2 x^2.$$

12. Substituting $x = e^t$ into the differential equation we obtain

$$\frac{d^2y}{dt^2} - 10\frac{dy}{dt} + 25y = 0.$$

The auxiliary equation is $m^2 - 10m + 25 = (m - 5)^2 = 0$ so that

$$y = c_1 e^{5t} + c_2 t e^{5t} = c_1 x^5 + c_2 x^5 \ln x.$$

5.3. Substituting $x = e^t$ into the differential equation we obtain

$$\frac{d^2y}{dt^2} + 9\frac{dy}{dt} + 8y = e^{2t}.$$

The auxiliary equation is $m^2 + 9m + 8 = (m+1)(m+8) = 0$ so that $y_c = c_1 e^{-t} + c_2 e^{-8t}$. Using undetermined coefficients we try $y_p = Ae^{2t}$. This leads to $30Ae^{2t} = e^{2t}$, so that A = 1/30 and

$$y = c_1 e^{-t} + c_2 e^{-8t} + \frac{1}{30} e^{2t} = c_1 x^{-1} + c_2 x^{-8} + \frac{1}{30} x^2.$$

:: Substituting $x = e^t$ into the differential equation we obtain

$$\frac{d^2y}{dt^2} - 5\frac{dy}{dt} + 6y = 2t$$

The auxiliary equation is $m^2 - 5m + 6 = (m - 2)(m - 3) = 0$ so that $y_c = c_1 e^{2t} + c_2 e^{3t}$. Using undetermined coefficients we try $y_p = At + B$. This leads to (-5A + 6B) + 6At = 2t, so that A = 1/3, B = 5/18, and

$$y = c_1 e^{2t} + c_2 e^{3t} + \frac{1}{3}t + \frac{5}{18} = c_1 x^2 + c_2 x^3 + \frac{1}{3} \ln x + \frac{5}{18}$$

15. Substituting $x = e^t$ into the differential equation we obtain

$$\frac{d^2y}{dt^2} - 4\frac{dy}{dt} + 13y = 4 + 3e^t.$$

203

Exercises 4.7 Cauchy-Euler Equation

The auxiliary equation is $m^2 - 4m + 13 = 0$ so that $y_c = e^{2t}(c_1 \cos 3t + c_2 \sin 3t)$. Using undetermine coefficients we try $y_p = A + Be^t$. This leads to $13A + 10Be^t = 4 + 3e^t$, so that A = 4/13, B = 3and

$$y = e^{2t}(c_1 \cos 3t + c_2 \sin 3t) + \frac{4}{13} + \frac{3}{10}e^t$$
$$= x^2 \left[c_1 \cos(3\ln x) + c_2 \sin(3\ln x)\right] + \frac{4}{13} + \frac{3}{10}x$$

36. From

· _-

$$\frac{d^2y}{dx^2} = \frac{1}{x^2} \left(\frac{d^2y}{dt^2} - \frac{dy}{dt} \right)$$

it follows that

$$\begin{split} \frac{d^3y}{dx^3} &= \frac{1}{x^2} \frac{d}{dx} \left(\frac{d^2y}{dt^2} - \frac{dy}{dt} \right) - \frac{2}{x^3} \left(\frac{d^2y}{dt^2} - \frac{dy}{dt} \right) \\ &= \frac{1}{x^2} \frac{d}{dx} \left(\frac{d^2y}{dt^2} \right) - \frac{1}{x^2} \frac{d}{dx} \left(\frac{dy}{dt} \right) - \frac{2}{x^3} \frac{d^2y}{dt^2} + \frac{2}{x^3} \frac{dy}{dt} \\ &= \frac{1}{x^2} \frac{d^3y}{dt^3} \left(\frac{1}{x} \right) - \frac{1}{x^2} \frac{d^2y}{dt^2} \left(\frac{1}{x} \right) - \frac{2}{x^3} \frac{d^2y}{dt^2} + \frac{2}{x^3} \frac{dy}{dt} \\ &= \frac{1}{x^3} \left(\frac{d^3y}{dt^3} - 3 \frac{d^2y}{dt^2} + 2 \frac{dy}{dt} \right). \end{split}$$

Substituting into the differential equation we obtain

$$\frac{d^3y}{dt^3} - 3\frac{d^2y}{dt^2} + 2\frac{dy}{dt} - 3\left(\frac{d^2y}{dt^2} - \frac{dy}{dt}\right) + 6\frac{dy}{dt} - 6y = 3 + 3t$$
$$\frac{d^3y}{dt^3} - 6\frac{d^2y}{dt^2} + 11\frac{dy}{dt} - 6y = 3 + 3t.$$

The auxiliary equation is $m^3 - 6m^2 + 11m - 6 = (m-1)(m-2)(m-3) = 0$ so that $y_c = c_1 e^t + c_2$ $(z_1)^{3^2}$. Using undetermined coefficients we try $y_p = A + Bt$. This leads to (11B - 6A) - 6Bt = 1 - 3t that A = -17/12, B = -1/2, and

$$y = c_1 e^t + c_2 e^{2t} + c_3 e^{3t} - \frac{17}{12} - \frac{1}{2}t = c_1 x + c_2 x^2 + c_3 x^3 - \frac{17}{12} - \frac{1}{2}\ln x.$$

The next two problems we use the substitution t = -x since the initial conditions are on the irre--x.1. In this case

$$\frac{dy}{dt} = \frac{dy}{dx}\frac{dx}{dt} = -\frac{dy}{dx}$$
$$\frac{d^2y}{dt^2} = \frac{d}{dt}\left(\frac{dy}{dt}\right) = \frac{d}{dt}\left(-\frac{dy}{dx}\right) = -\frac{d}{dt}(y') = -\frac{dy'}{dx}\frac{dx}{dt} = -\frac{d^2y}{dx^2}\frac{dx}{dt} = \frac{d^2y}{dx^2}.$$

204

37. The differential equation and initial conditions become

$$4t^2 \frac{d^2 y}{dt^2} + y = 0; \quad y(t) \Big|_{t=1} = 2, \quad y'(t) \Big|_{t=1} = -4.$$

The auxiliary equation is $4m^2 - 4m + 1 = (2m - 1)^2 = 0$, so that

$$y = c_1 t^{1/2} + c_2 t^{1/2} \ln t$$
 and $y' = \frac{1}{2} c_1 t^{-1/2} + c_2 \left(t^{-1/2} + \frac{1}{2} t^{-1/2} \ln t \right).$

The initial conditions imply $c_1 = 2$ and $1 + c_2 = -4$. Thus

$$y = 2t^{1/2} - 5t^{1/2} \ln t = 2(-x)^{1/2} - 5(-x)^{1/2} \ln(-x), \quad x < 0.$$

38. The differential equation and initial conditions become

$$t^2 \frac{d^2 y}{dt^2} - 4t \frac{dy}{dt} + 6y = 0; \quad y(t) \Big|_{t=2} = 8, \quad y'(t) \Big|_{t=2} = 0.$$

The auxiliary equation is $m^2 - 5m + 6 = (m - 2)(m - 3) = 0$, so that

$$y = c_1 t^2 + c_2 t^3$$
 and $y' = 2c_1 t + 3c_2 t^2$.

The initial conditions imply

$$4c_1 + 8c_2 = 8$$

$$4c_1 + 12c_2 = 0$$

from which we find $c_1 = 6$ and $c_2 = -2$. Thus

$$y = 6t^2 - 2t^3 = 6x^2 + 2x^3, \quad x < 0.$$

12. Letting u = x + 2 we obtain dy/dx = dy/du and, using the Chain Rule,

$$\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{du}\right) = \frac{d^2y}{du^2}\frac{du}{dx} = \frac{d^2y}{du^2}(1) = \frac{d^2y}{du^2}$$

Substituting into the differential equation we obtain

$$u^2 \frac{d^2 y}{du^2} + u \frac{dy}{du} + y = 0.$$

The auxiliary equation is $m^2 + 1 = 0$ so that

$$y = c_1 \cos(\ln u) + c_2 \sin(\ln u) = c_1 \cos[\ln(x+2)] + c_2 \sin[\ln(x+2)].$$

+. If 1 - i is a root of the auxiliary equation then so is 1 + i, and the auxiliary equation is

$$(m-2)[m-(1+i)][m-(1-i)] = m^3 - 4m^2 + 6m - 4 = 0.$$

We need $m^3 - 4m^2 + 6m - 4$ to have the form m(m-1)(m-2) + bm(m-1) + cm + d. Expanding this last expression and equating coefficients we get b = -1, c = 3, and d = -4. Thus, the differential equation is

$$x^{3}y''' - x^{2}y'' + 3xy' - 4y = 0.$$

205

41. For $x^2y'' = 0$ the auxiliary equation is m(m-1) = 0 and the general solution is $y = c_1 + c_2$ initial conditions imply $c_1 = y_0$ and $c_2 = y_1$, so $y = y_0 + y_1x$. The initial conditions are so for all real values of y_0 and y_1 .

For $x^2y'' - 2xy' + 2y = 0$ the auxiliary equation is $m^2 - 3m + 2 = (m-1)(m-2) = 0$ all general solution is $y = c_1x + c_2x^2$. The initial condition $y(0) = y_0$ implies $0 = y_0$ and the col $y'(0) = y_1$ implies $c_1 = y_1$. Thus, the initial conditions are satisfied for $y_0 = 0$ and for all real $z_1^2y_1$.

For $x^2y'' - 4xy' + 6y = 0$ the auxiliary equation is $m^2 - 5m + 6 = (m-2)(m-3) = 0$ and general solution is $y = c_1x^2 + c_2x^3$. The initial conditions imply $y(0) = 0 = y_0$ and y'(0) = 0. The initial conditions are satisfied only for $y_0 = y_1 = 0$.

- 42. The function $y(x) = -\sqrt{x} \cos(\ln x)$ is defined for x > 0 and has x-intercepts where $\ln x = \pi$ is for k an integer or where $x = e^{\pi/2 + k\pi}$. Solving $\pi/2 + k\pi = 0.5$ we get $k \approx -0.34$, so $e^{\pi/2 + k\pi}$ for all negative integers and the graph has infinitely many x-intercepts in the interval (0, 0.5)
- 43. The auxiliary equation is 2m(m-1)(m-2) 10.98m(m-1) + 8.5m + 1.3 = 0, s. $m_1 = -0.053299, m_2 = 1.81164, m_3 = 6.73166$, and

$$y = c_1 x^{-0.053299} + c_2 x^{1.81164} + c_3 x^{6.73166}.$$

22. The auxiliary equation is m(m-1)(m-2) + 4m(m-1) + 5m - 9 = 0, so that $m_1 = 1.4081$. the two complex roots are $-1.20409 \pm 2.22291i$. The general solution of the differential equation

$$y = c_1 x^{1.40819} + x^{-1.20409} [c_2 \cos(2.22291 \ln x) + c_3 \sin(2.22291 \ln x)].$$

46. The auxiliary equation is $m(m-1)(m-2)(m-3) - 6m(m-1)(m-2) + 33m(m-1) - 105m + 10^{\circ} =$ 5. that $m_1 = m_2 = 3 + 2i$ and $m_3 = m_4 = 3 - 2i$. The general solution of the differential equation is

$$y = x^{3}[c_{1}\cos(2\ln x) + c_{2}\sin(2\ln x)] + x^{3}\ln x[c_{3}\cos(2\ln x) + c_{4}\sin(2\ln x)].$$

 \pm ⁻. The auxiliary equation

$$m(m-1)(m-2) - m(m-1) - 2m + 6 = m^3 - 4m^2 + m + 6 = 0$$

Les roots $m_1 = -1$, $m_2 = 2$, and $m_3 = 3$, so $y_c = c_1 x^{-1} + c_2 x^2 + c_3 x^3$. With $y_1 = x^{-1}$, $y_2 = x^3$, and the identification f(x) = 1/x, we get from (11) of Section 4.6 in the text

$$W_1 = x^3$$
, $W_2 = -4$, $W_3 = 3/x$, and $W = 12x$.

206

Then
$$u'_1 = W_1/W = x^2/12$$
, $u'_2 = W_2/W = -1/3x$, $u'_3 = 1/4x^2$, and integration gives

$$u_1 = \frac{x^3}{36}$$
, $u_2 = -\frac{1}{3}\ln x$, and $u_3 = -\frac{1}{4x}$,

 \mathbf{SO}

$$y_p = u_1 y_1 + u_2 y_2 + u_3 y_3 = \frac{x^3}{36} x^{-1} + x^2 \left(-\frac{1}{3} \ln x \right) + x^3 \left(-\frac{1}{4x} \right) = -\frac{2}{9} x^2 - \frac{1}{3} x^2 \ln x,$$

and

$$y = y_c + y_p = c_1 x^{-1} + c_2 x^2 + c_3 x^3 - \frac{2}{9} x^2 - \frac{1}{3} x^2 \ln x, \qquad x > 0$$

1. From Dx = 2x - y and Dy = x we obtain y = 2x - Dx, $Dy = 2Dx - D^2x$, and $(D^2 - 2D + 1)x = 0$. The solution is

$$x = c_1 e^t + c_2 t e^t$$
$$y = (c_1 - c_2) e^t + c_2 t e^t.$$

From Dx = 4x + 7y and Dy = x - 2y we obtain $y = \frac{1}{7}Dx - \frac{4}{7}x$, $Dy = \frac{1}{7}D^2x - \frac{4}{7}Dx$, and $D^2 - 2D - 15x = 0$. The solution is

$$x = c_1 e^{5t} + c_2 e^{-3t}$$
$$y = \frac{1}{7} c_1 e^{5t} - c_2 e^{-3t}$$

: From Dx = -y + t and Dy = x - t we obtain y = t - Dx, $Dy = 1 - D^2x$, and $(D^2 + 1)x = 1 + t$. The solution is

$$x = c_1 \cos t + c_2 \sin t + 1 + t$$

$$y = c_1 \sin t - c_2 \cos t + t - 1.$$

From Dx - 4y = 1 and x + Dy = 2 we obtain $y = \frac{1}{4}Dx - \frac{1}{4}$, $Dy = \frac{1}{4}D^2x$, and $(D^2 + 1)x = 2$. The solution is

$$x = c_1 \cos t + c_2 \sin t + 2$$
$$y = \frac{1}{4}c_2 \cos t - \frac{1}{4}c_1 \sin t - \frac{1}{4}$$

207

5. From $(D^2+5)x - 2y = 0$ and $-2x + (D^2+2)y = 0$ we obtain $y = \frac{1}{2}(D^2+5)x$, $D^2y = \frac{1}{2}(D^4+5)^2$ and $(D^2+1)(D^2+6)x = 0$. The solution is

$$x = c_1 \cos t + c_2 \sin t + c_3 \cos \sqrt{6} t + c_4 \sin \sqrt{6} t$$

$$y = 2c_1 \cos t + 2c_2 \sin t - \frac{1}{2}c_3 \cos \sqrt{6}t - \frac{1}{2}c_4 \sin \sqrt{6}t.$$

6. From (D+1)x + (D-1)y = 2 and 3x + (D+2)y = -1 we obtain $x = -\frac{1}{3} - \frac{1}{3}(D-Dx) = -\frac{1}{3}(D^2+2D)y$, and $(D^2+5)y = -7$. The solution is

$$y = c_1 \cos \sqrt{5} t + c_2 \sin \sqrt{5} t - \frac{7}{5}$$
$$x = \left(-\frac{2}{3}c_1 - \frac{\sqrt{5}}{3}c_2\right) \cos \sqrt{5} t + \left(\frac{\sqrt{5}}{3}c_1 - \frac{2}{3}c_2\right) \sin \sqrt{5} t + \frac{3}{5}$$

7. From $D^2x = 4y + e^t$ and $D^2y = 4x - e^t$ we obtain $y = \frac{1}{4}D^2x - \frac{1}{4}e^t$, $D^2y = \frac{1}{4}D^4x - \frac{1}{4}e^t$, and $(D^2 + 4)(D - 2)(D + 2)x = -3e^t$. The solution is

$$x = c_1 \cos 2t + c_2 \sin 2t + c_3 e^{2t} + c_4 e^{-2t} + \frac{1}{5} e^t$$
$$y = -c_1 \cos 2t - c_2 \sin 2t + c_3 e^{2t} + c_4 e^{-2t} - \frac{1}{5} e^t$$

5. From $(D^2 + 5)x + Dy = 0$ and (D + 1)x + (D - 4)y = 0 we obtain $(D - 5)(D^2 + 4)x = D - 5)(D^2 + 4)y = 0$. The solution is

$$x = c_1 e^{5t} + c_2 \cos 2t + c_3 \sin 2t$$
$$y = c_4 e^{5t} + c_5 \cos 2t + c_6 \sin 2t.$$

Substituting into (D+1)x + (D-4)y = 0 gives

$$(6c_1 + c_4)e^{5t} + (c_2 + 2c_3 - 4c_5 + 2c_6)\cos 2t + (-2c_2 + c_3 - 2c_5 - 4c_6)\sin 2t = 0$$

so that $c_4 = -6c_1, c_5 = \frac{1}{2}c_3, c_6 = -\frac{1}{2}c_2$ and

$$y = -6c_1e^{5t} + \frac{1}{2}c_3\cos 2t - \frac{1}{2}c_2\sin 2t.$$

From $Dx + D^2y = e^{3t}$ and $(D+1)x + (D-1)y = 4e^{3t}$ we obtain $D(D^2+1)x = 34e^{4t}$ $D(D^2+1)y = -8e^{3t}$. The solution is

$$y = c_1 + c_2 \sin t + c_3 \cos t - \frac{4}{15}e^{3t}$$
$$x = c_4 + c_5 \sin t + c_6 \cos t + \frac{17}{15}e^{3t}.$$

Substituting into $(D+1)x + (D-1)y = 4e^{3t}$ gives

$$(c_4 - c_1) + (c_5 - c_6 - c_3 - c_2)\sin t + (c_6 + c_5 + c_2 - c_3)\cos t = 0$$

208

so that $c_4 = c_1$, $c_5 = c_3$, $c_6 = -c_2$. and

$$x = c_1 - c_2 \cos t + c_3 \sin t + \frac{17}{15}e^{3t}.$$

1). From $D^2x - Dy = t$ and (D+3)x + (D+3)y = 2 we obtain D(D+1)(D+3)x = 1 + 3t and D(D+1)(D+3)y = -1 - 3t. The solution is

$$x = c_1 + c_2 e^{-t} + c_3 e^{-3t} - t + \frac{1}{2} t^2$$
$$y = c_4 + c_5 e^{-t} + c_6 e^{-3t} + t - \frac{1}{2} t^2.$$

Substituting into (D+3)x + (D+3)y = 2 and $D^2x - Dy = t$ gives

$$3(c_1 + c_4) + 2(c_2 + c_5)e^{-t} = 2$$

and

$$(c_2 + c_5)e^{-t} + 3(3c_3 + c_6)e^{-3t} = 0$$

so that $c_4 = -c_1$, $c_5 = -c_2$, $c_6 = -3c_3$, and

$$y = -c_1 - c_2 e^{-t} - 3c_3 e^{-3t} + t - \frac{1}{2}t^2.$$

11. From $(D^2 - 1)x - y = 0$ and (D - 1)x + Dy = 0 we obtain $y = (D^2 - 1)x$, $Dy = (D^3 - D)x$, and $(D - 1)(D^2 + D + 1)x = 0$. The solution is

$$x = c_1 e^t + e^{-t/2} \left[c_2 \cos \frac{\sqrt{3}}{2} t + c_3 \sin \frac{\sqrt{3}}{2} t \right]$$
$$y = \left(-\frac{3}{2} c_2 - \frac{\sqrt{3}}{2} c_3 \right) e^{-t/2} \cos \frac{\sqrt{3}}{2} t + \left(\frac{\sqrt{3}}{2} c_2 - \frac{3}{2} c_3 \right) e^{-t/2} \sin \frac{\sqrt{3}}{2} t.$$

12. From $(2D^2 - D - 1)x - (2D + 1)y = 1$ and (D - 1)x + Dy = -1 we obtain (2D + 1)(D - 1)(D + 1)x = -1and (2D + 1)(D + 1)y = -2. The solution is

$$x = c_1 e^{-t/2} + c_2 e^{-t} + c_3 e^t + 1$$
$$y = c_4 e^{-t/2} + c_5 e^{-t} - 2.$$

Substituting into (D-1)x + Dy = -1 gives

$$\left(-\frac{3}{2}c_1 - \frac{1}{2}c_4\right)e^{-t/2} + (-2c_2 - c_5)e^{-t} = 0$$

so that $c_4 = -3c_1$, $c_5 = -2c_2$, and

$$y = -3c_1e^{-t/2} - 2c_2e^{-t} - 2.$$

209

Exercises 4.8 Solving Systems of Linear DEs by Elimination

13. From $(2D-5)x+Dy = e^t$ and $(D-1)x+Dy = 5e^t$ we obtain $Dy = (5-2D)x+e^t$ and (4-D)x = -Then

$$x = c_1 e^{4t} + \frac{4}{3}e^t$$

and $Dy = -3c_1e^{4t} + 5e^t$ so that

$$y = -\frac{3}{4}c_1e^{4t} + c_2 + 5e^t.$$

14. From $Dx + Dy = e^t$ and $(-D^2 + D + 1)x + y = 0$ we obtain $y = (D^2 - D - 1)x$, $Dy = (D^3 - D^2 - D^2)^{-1}$ and $D^2(D-1)x = e^t$. The solution is

$$x = c_1 + c_2 t + c_3 e^t + t e^t$$
$$y = -c_1 - c_2 - c_2 t - c_3 e^t - t e^t + e^t.$$

15. Multiplying the first equation by D + 1 and the second equation by $D^2 + 1$ and subtracting obtain $(D^4 - D^2)x = 1$. Then

$$x = c_1 + c_2t + c_3e^t + c_4e^{-t} - \frac{1}{2}t^2$$

Multiplying the first equation by D + 1 and subtracting we obtain $D^2(D + 1)y = 1$. Then

$$y = c_5 + c_6 t + c_7 e^{-t} - \frac{1}{2} t^2$$

Substituting into $(D-1)x + (D^2+1)y = 1$ gives

$$(-c_1 + c_2 + c_5 - 1) + (-2c_4 + 2c_7)e^{-t} + (-1 - c_2 + c_6)t = 1$$

so that $c_5 = c_1 - c_2 + 2$, $c_6 = c_2 + 1$, and $c_7 = c_4$. The solution of the system is

$$x = c_1 + c_2 t + c_3 e^t + c_4 e^{-t} - \frac{1}{2} t^2$$
$$y = (c_1 - c_2 + 2) + (c_2 + 1)t + c_4 e^{-t} - \frac{1}{2} t^2.$$

16. From $D^2x - 2(D^2 + D)y = \sin t$ and x + Dy = 0 we obtain x = -Dy, $D^2x = -D^3$, $D(D^2 + 2D + 2)y = -\sin t$. The solution is

$$y = c_1 + c_2 e^{-t} \cos t + c_3 e^{-t} \sin t + \frac{1}{5} \cos t + \frac{2}{5} \sin t$$
$$x = (c_2 + c_3) e^{-t} \sin t + (c_2 - c_3) e^{-t} \cos t + \frac{1}{5} \sin t - \frac{2}{5} \cos t$$

17. From Dx = y, Dy = z, and Dz = x we obtain $x = D^2y = D^3x$ so that $(D-1)(D^2 + D + 1) = D^2y$

$$x = c_1 e^t + e^{-t/2} \left[c_2 \sin \frac{\sqrt{3}}{2} t + c_3 \cos \frac{\sqrt{3}}{2} t \right],$$

$$y = c_1 e^t + \left(-\frac{1}{2}c_2 - \frac{\sqrt{3}}{2}c_3\right) e^{-t/2} \sin\frac{\sqrt{3}}{2}t + \left(\frac{\sqrt{3}}{2}c_2 - \frac{1}{2}c_3\right) e^{-t/2} \cos\frac{\sqrt{3}}{2}t,$$

and

$$z = c_1 e^t + \left(-\frac{1}{2}c_2 + \frac{\sqrt{3}}{2}c_3\right) e^{-t/2} \sin\frac{\sqrt{3}}{2}t + \left(-\frac{\sqrt{3}}{2}c_2 - \frac{1}{2}c_3\right) e^{-t/2} \cos\frac{\sqrt{3}}{2}t$$

15. From $Dx + z = e^t$, (D - 1)x + Dy + Dz = 0, and $x + 2y + Dz = e^t$ we obtain $z = -Dx + e^t$. $Dz = -D^2x + e^t$, and the system $(-D^2 + D - 1)x + Dy = -e^t$ and $(-D^2 + 1)x + 2y = 0$. Then $y = \frac{1}{2}(D^2 - 1)x$, $Dy = \frac{1}{2}D(D^2 - 1)x$, and $(D - 2)(D^2 + 1)x = -2e^t$ so that the solution is

- $x = c_1 e^{2t} + c_2 \cos t + c_3 \sin t + e^t$ $y = \frac{3}{2}c_1 e^{2t} c_2 \cos t c_3 \sin t$ $z = -2c_1 e^{2t} c_3 \cos t + c_2 \sin t.$
- 13. Write the system in the form

$$Dx - 6y = 0$$
$$x - Dy + z = 0$$
$$x + y - Dz = 0.$$

Multiplying the second equation by D and adding to the third equation we obtain $D+1)x - (D^2-1)y = 0$. Eliminating y between this equation and Dx - 6y = 0 we find

$$(D3 - D - 6D - 6)x = (D + 1)(D + 2)(D - 3)x = 0.$$

Thus

$$x = c_1 e^{-t} + c_2 e^{-2t} + c_3 e^{3t}$$

and, successively substituting into the first and second equations, we get

$$y = -\frac{1}{6}c_1e^{-t} - \frac{1}{3}c_2e^{-2t} + \frac{1}{2}c_3e^{3t}$$
$$z = -\frac{5}{6}c_1e^{-t} - \frac{1}{3}c_2e^{-2t} + \frac{1}{2}c_3e^{3t}.$$

 \perp Write the system in the form

$$(D+1)x - z = 0$$
$$(D+1)y - z = 0$$
$$x - y + Dz = 0.$$

Equiliplying the third equation by D + 1 and adding to the second equation we obtain $D + 1x + (D^2 + D - 1)z = 0$. Eliminating z between this equation and (D + 1)x - z = 0

211

Exercises 4.8 Solving Systems of Linear DEs by Elimination

= find $D(D+1)^2x = 0$. Thus

$$x = c_1 + c_2 e^{-t} + c_3 t e^{-t},$$

and is successively substituting into the first and third equations, we get

$$y = c_1 + (c_2 - c_3)e^{-t} + c_3te^{-t}$$
$$z = c_1 + c_3e^{-t}.$$

11. From (D+5)x + y = 0 and 4x - (D+1)y = 0 we obtain y = -(D+5)x so that $Dy = -(D^2 + 1)^2$. Then $4x + (D^2 + 5D)x + (D+5)x = 0$ and $(D+3)^2x = 0$. Thus

$$x = c_1 e^{-3t} + c_2 t e^{-3t}$$
$$y = -(2c_1 + c_2)e^{-3t} - 2c_2 t e^{-3t}.$$

Using x(1) = 0 and y(1) = 1 we obtain

$$c_1 e^{-3} + c_2 e^{-3} = 0$$
$$-(2c_1 + c_2)e^{-3} - 2c_2 e^{-3} = 1$$

. -

21.1

$$c_1 + c_2 = 0$$

 $2c_1 + 3c_2 = -e^3.$

Thus $c_1 = e^3$ and $c_2 = -e^3$. The solution of the initial value problem is

$$x = e^{-3t+3} - te^{-3t+3}$$
$$y = -e^{-3t+3} + 2te^{-3t+3}.$$

2. From Dx - y = -1 and 3x + (D-2)y = 0 we obtain $x = -\frac{1}{3}(D-2)y$ so that $Dx = -\frac{1}{3}(D^2 - 1)^2$ Then $-\frac{1}{3}(D^2 - 2D)y = y - 1$ and $(D^2 - 2D + 3)y = 3$. Thus

$$y = e^{t} \left(c_{1} \cos \sqrt{2} t + c_{2} \sin \sqrt{2} t \right) + 1$$
$$x = \frac{1}{3} e^{t} \left[\left(c_{1} - \sqrt{2} c_{2} \right) \cos \sqrt{2} t + \left(\sqrt{2} c_{1} + c_{2} \right) \sin \sqrt{2} t \right] +$$

Using x(0) = y(0) = 0 we obtain

$$c_1 + 1 = 0$$
$$\frac{1}{3} \left(c_1 - \sqrt{2} c_2 \right) + \frac{2}{3} = 0.$$

 $\frac{2}{3}$

212

Thus $c_1 = -1$ and $c_2 = \sqrt{2}/2$. The solution of the initial value problem is

$$x = e^{t} \left(-\frac{2}{3} \cos \sqrt{2} t - \frac{\sqrt{2}}{6} \sin \sqrt{2} t \right) + \frac{2}{3}$$
$$y = e^{t} \left(-\cos \sqrt{2} t + \frac{\sqrt{2}}{2} \sin \sqrt{2} t \right) + 1.$$

- 23. Equating Newton's law with the net forces in the x- and y-directions gives $m d^2x/dt^2 = 0$ and $m d^2y/dt^2 = -mg$, respectively. From $mD^2x = 0$ we obtain $x(t) = c_1t + c_2$, and from $mD^2y = -mg$ or $D^2y = -g$ we obtain $y(t) = -\frac{1}{2}gt^2 + c_3t + c_4$.
- 24. From Newton's second law in the x-direction we have

$$m\frac{d^2x}{dt^2} = -k\cos\theta = -k\frac{1}{v}\frac{dx}{dt} = -|c|\frac{dx}{dt}$$

In the *y*-direction we have

$$m\frac{d^2y}{dt^2} = -mg - k\sin\theta = -mg - k\frac{1}{v}\frac{dy}{dt} = -mg - |c|\frac{dy}{dt}$$

From $mD^2x + |c|Dx = 0$ we have D(mD + |c|)x = 0 so that $(mD + |c|)x = c_1$ or $(D + |c|/m)x = c_2$. This is a linear first-order differential equation. An integrating factor is $e^{\int |c|dt/m} = e^{|c|t/m}$ so that

$$\frac{d}{dt}[e^{|c|t/m}x] = c_2 e^{|c|t/m}$$

and $e^{|c|t/m}x = (c_2m/|c|)e^{|c|t/m} + c_3$. The general solution of this equation is $x(t) = c_4 + c_3e^{-|c|t/m}$.

From $(mD^2 + |c|D)y = -mg$ we have D(mD + |c|)y = -mg so that $(mD + |c|)y = -mgt + c_1$ or $(D + |c|/m)y = -gt + c_2$. This is a linear first-order differential equation with integrating factor $e^{\int |c|dt/m} = e^{|c|t/m}$. Thus

$$\frac{d}{dt}[e^{|c|t/m}y] = (-gt + c_2)e^{|c|t/m}$$
$$e^{|c|t/m}y = -\frac{mg}{|c|}te^{|c|t/m} + \frac{m^2g}{c^2}e^{|c|t/m} + c_3e^{|c|t/m} + c_4$$

and

$$y(t) = -rac{mg}{|c|}t + rac{m^2g}{c^2} + c_3 + c_4 e^{-|c|t/m}.$$

15. Multiplying the first equation by D + 1 and the second equation by D we obtain

$$D(D+1)x - 2D(D+1)y = 2t + t^{2}$$
$$D(D+1)x - 2D(D+1)y = 0.$$

This leads to $2t + t^2 = 0$, so the system has no solution.

213

Exercises 4.8 Solving Systems of Linear DEs by Elimination

- 26. The FindRoot application of *Mathematica* gives a solution of $x_1(t) = x_2(t)$ as approximate: t = 13.73 minutes. So tank B contains more salt than tank A for t > 13.73 minutes.
- 27. (a) Separating variables in the first equation, we have $dx_1/x_1 = -dt/50$, so $x_1 = c_1 e^{-t/50}$. Fr. $x_1(0) = 15$ we get $c_1 = 15$. The second differential equation then becomes

$$\frac{dx_2}{dt} = \frac{15}{50}e^{-t/50} - \frac{2}{75}x_2 \qquad \text{or} \qquad \frac{dx_2}{dt} + \frac{2}{75}x_2 = \frac{3}{10}e^{-t/50}.$$

This differential equation is linear and has the integrating factor $e^{\int 2 dt/75} = e^{2t/75}$. Then

$$\frac{d}{dt}[e^{2t/75}x_2] = \frac{3}{10}e^{-t/50 + 2t/75} = \frac{3}{10}e^{t/150}$$

so

$$e^{2t/75}x_2 = 45e^{t/150} + c_2$$

and

$$x_2 = 45e^{-t/50} + c_2e^{-2t/75}.$$

From $x_2(0) = 10$ we get $c_2 = -35$. The third differential equation then becomes

$$\frac{dx_3}{dt} = \frac{90}{75}e^{-t/50} - \frac{70}{75}e^{-2t/75} - \frac{1}{25}x_3$$
$$\frac{dx_3}{dt} + \frac{1}{25}x_3 = \frac{6}{5}e^{-t/50} - \frac{14}{15}e^{-2t/75}.$$

or

This differential equation is linear and has the integrating factor $e^{\int dt/25} = e^{t/25}$. Then

$$\frac{d}{dt}[e^{t/25}x_3] = \frac{6}{5}e^{-t/50+t/25} - \frac{14}{15}e^{-2t/75+t/25} = \frac{6}{5}e^{t/50} - \frac{14}{15}e^{t/75}$$

 \mathbf{SO}

$$e^{t/25}x_3 = 60e^{t/50} - 70e^{t/75} + c_3$$

and

$$x_3 = 60e^{-t/50} - 70e^{-2t/75} + c_3e^{-t/25}$$

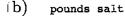
From $x_3(0) = 5$ we get $c_3 = 15$. The solution of the initial-value problem is

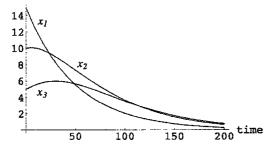
$$x_1(t) = 15e^{-t/50}$$

$$x_2(t) = 45e^{-t/50} - 35e^{-2t/75}$$

$$x_3(t) = 60e^{-t/50} - 70e^{-2t/75} + 15e^{-t/25}$$

214





c) Solving $x_1(t) = \frac{1}{2}$, $x_2(t) = \frac{1}{2}$, and $x_3(t) = \frac{1}{2}$, FindRoot gives, respectively, $t_1 = 170.06 \text{ min}$, $t_2 = 214.7 \text{ min}$, and $t_3 = 224.4 \text{ min}$. Thus, all three tanks will contain less than or equal to 0.5 pounds of salt after 224.4 minutes.

Exercises 4.9

Nonlinear Differential Equations

1 We have $y'_1 = y''_1 = e^x$, so

$$(y_1'')^2 = (e^x)^2 = e^{2x} = y_1^2.$$

Also, $y'_{2} = -\sin x$ and $y''_{2} = -\cos x$, so

$$(y_2'')^2 = (-\cos x)^2 = \cos^2 x = y_2^2.$$

However, if $y = c_1y_1 + c_2y_2$, we have $(y'')^2 = (c_1e^x - c_2\cos x)^2$ and $y^2 = (c_1e^x + c_2\cos x)^2$. Thus $y''^2 \neq y^2$.

1. We have $y'_1 = y''_1 = 0$, so

$$y_1 y_1'' = 1 \cdot 0 = 0 = \frac{1}{2} (0)^2 = \frac{1}{2} (y_1')^2.$$

$$y_2 y_2'' = x^2(2) = 2x^2 = \frac{1}{2}(2x)^2 = \frac{1}{2}(y_2')^2.$$

However, if $y = c_1y_1 + c_2y_2$, we have $yy'' = (c_1 \cdot 1 + c_2x^2)(c_1 \cdot 0 + 2c_2) = 2c_2(c_1 + c_2x^2)$ and $\frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2}[c_1 \cdot 0 + c_2(2x)]^2 = 2c_2^2x^2$. Thus $yy'' \neq \frac{1}{2}(y')^2$. Let u = y' so that u' = y''. The equation becomes $u' = -u^2 - 1$ which is separable. Thus $\frac{du}{u^2 + 1} = -dx \implies \tan^{-1}u = -x + c_1 \implies y' = \tan(c_1 - x) \implies y = \ln|\cos(c_1 - x)| + c_2$. Let u = y' so that u' = y''. The equation becomes $u' = 1 + u^2$. Separating variables we obtain $\frac{du}{1 + u^2} = dx \implies \tan^{-1}u = x + c_1 \implies u = \tan(x + c_1) \implies y = -\ln|\cos(x + c_1)| + c_2$.

Exercises 4.9 Nonlinear Differential Equations

5. Let u = y' so that u' = y''. The equation becomes $x^2u' + u^2 = 0$. Separating variables we obtain

$$\frac{du}{u^2} = -\frac{dx}{x^2} \implies -\frac{1}{u} = \frac{1}{x} + c_1 = \frac{c_1 x + 1}{x} \implies u = -\frac{1}{c_1} \left(\frac{x}{x + 1/c_1}\right) = \frac{1}{c_1} \left(\frac{1}{c_1 x + 1} - 1\right)$$
$$\implies y = \frac{1}{c_1^2} \ln|c_1 x + 1| - \frac{1}{c_1} x + c_2.$$

6. Let u = y' so that y'' = u du/dy. The equation becomes $(y+1)u du/dy = u^2$. Separating variation we obtain

$$\frac{du}{u} = \frac{dy}{y+1} \implies \ln|u| = \ln|y+1| + \ln c_1 \implies u = c_1(y+1)$$
$$\implies \frac{dy}{dx} = c_1(y+1) \implies \frac{dy}{y+1} = c_1 dx$$
$$\implies \ln|y+1| = c_1 x - c_2 \implies y+1 = c_3 e^{c_1 x}.$$

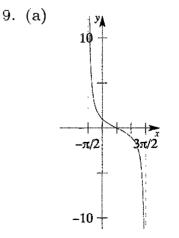
7. Let u = y' so that y'' = u du/dy. The equation becomes $u du/dy + 2yu^3 = 0$. Separating variation we obtain

$$\frac{du}{u^2} + 2y \, dy = 0 \implies -\frac{1}{u} + y^2 = c_1 \implies u = \frac{1}{y^2 - c_1} \implies y' = \frac{1}{y^2 - c_1}$$
$$\implies \left(y^2 - c_1\right) dy = dx \implies \frac{1}{3}y^3 - c_1y = x + c_2.$$

5. Let u = y' so that y'' = u du/dy. The equation becomes $y^2 u du/dy = u$. Separating variables obtain

$$du = \frac{dy}{y^2} \implies u = -\frac{1}{y} + c_1 \implies y' = \frac{c_1 y - 1}{y} \implies \frac{y}{c_1 y - 1} \, dy = dx$$
$$\implies \frac{1}{c_1} \left(1 + \frac{1}{c_1 y - 1} \right) \, dy = dx \, (\text{for } c_1 \neq 0) \implies \frac{1}{c_1} y + \frac{1}{c_1^2} \ln|y - 1| = x + c_2.$$

If $c_1 = 0$, then $y \, dy = -dx$ and another solution is $\frac{1}{2}y^2 = -x + c_2$.



216 http://profesoresparticulareslima.blogspot.pe/

(b) Let u = y' so that y'' = u du/dy. The equation becomes u du/dy + yu = 0. Separating variables we obtain

$$du = -y \, dy \implies u = -\frac{1}{2}y^2 + c_1 \implies y' = -\frac{1}{2}y^2 + c_1.$$

When $x = 0, y = 1$ and $y' = -1$ so $-1 = -1/2 + c_1$ and $c_1 = -1/2$. Then
 $\frac{dy}{dx} = -\frac{1}{2}y^2 - \frac{1}{2} \implies \frac{dy}{y^2 + 1} = -\frac{1}{2}dx \implies \tan^{-1}y = -\frac{1}{2}x + c_2$
 $\implies y = \tan\left(-\frac{1}{2}x + c_2\right).$

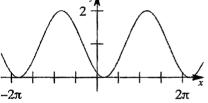
When x = 0, y = 1 so $1 = \tan c_2$ and $c_2 = \pi/4$. The solution of the initial-value problem is

$$y = \tan\left(\frac{\pi}{4} - \frac{1}{2}x\right).$$

The graph is shown in part (a).

(c) The interval of definition is $-\pi/2 < \pi/4 - x/2 < \pi/2$ or $-\pi/2 < x < 3\pi/2$. Let u = y' so that u' = y''. The equation becomes $(u')^2 + u^2 = 1$ which results in $u' = \pm \sqrt{1 - u^2}$. To solve $u' = \sqrt{1 - u^2}$ we separate variables:

$$\frac{du}{\sqrt{1-u^2}} = dx \implies \sin^{-1}u = x + c_1 \implies u = \sin(x+c_1)$$
$$\implies y' = \sin(x+c_1).$$

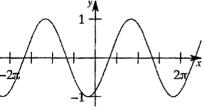


When
$$x = \pi/2$$
, $y' = \sqrt{3}/2$, so $\sqrt{3}/2 = \sin(\pi/2 + c_1)$ and $c_1 = -\pi/6$. Thus

$$y' = \sin\left(x - \frac{\pi}{6}\right) \implies y = -\cos\left(x - \frac{\pi}{6}\right) + c_2.$$

When $x = \pi/2$, y = 1/2, so $1/2 = -\cos(\pi/2 - \pi/6) + c_2 = -1/2 + c_2$ and $c_2 = 1$. The solution of the initial-value problem is $y = 1 - \cos(x - \pi/6)$.

To solve
$$u' = -\sqrt{1 - u^2}$$
 we separate variables:
 $\frac{du}{\sqrt{1 - u^2}} = -dx \implies \cos^{-1} u = x + c_1$
 $\implies u = \cos(x + c_1) \implies y' = \cos(x + c_1).$



When
$$x = \pi/2$$
, $y' = \sqrt{3}/2$, so $\sqrt{3}/2 = \cos(\pi/2 + c_1)$ and $c_1 = -\pi/3$. Thus
 $y' = \cos\left(x - \frac{\pi}{3}\right) \implies y = \sin\left(x - \frac{\pi}{3}\right) + c_2$.

When $x = \pi/2$, y = 1/2, so $1/2 = \sin(\pi/2 - \pi/3) + c_2 = 1/2 + c_2$ and $c_2 = 0$. The solution of the initial-value problem is $y = \sin(x - \pi/3)$.

217

Exercises 4.9 Nonlinear Differential Equations

11. Let u = y' so that u' = y''. The equation becomes $u' - (1/x)u = (1/x)u^3$, which is Bernoulli. $u = u^{-2}$ we obtain dw/dx + (2/x)w = -2/x. An integrating factor is x^2 , so

$$\frac{d}{dx}[x^2w] = -2x \implies x^2w = -x^2 + c_1 \implies w = -1 + \frac{c_1}{x^2}$$
$$\implies u^{-2} = -1 + \frac{c_1}{x^2} \implies u = \frac{x}{\sqrt{c_1 - x^2}}$$
$$\implies \frac{dy}{dx} = \frac{x}{\sqrt{c_1 - x^2}} \implies y = -\sqrt{c_1 - x^2} + c_2$$
$$\implies c_1 - x^2 = (c_2 - y)^2 \implies x^2 + (c_2 - y)^2 = c_1$$

12. Let u = y' so that u' = y''. The equation becomes $u' - (1/x)u = u^2$, which is a Bernoulli difference equation. Using the substitution $w = u^{-1}$ we obtain dw/dx + (1/x)w = -1. An integrating to is x, so

$$\frac{d}{dx}[xw] = -x \implies w = -\frac{1}{2}x + \frac{1}{x}c \implies \frac{1}{u} = \frac{c_1 - x^2}{2x} \implies u = \frac{2x}{c_1 - x^2} \implies y = -\ln\left|c_1 - x^2\right| - \frac{1}{2}c_1 + \frac{1}{2}c_2 +$$

I: Problems 13-16 the thinner curve is obtained using a numerical solver, while the thicker curve p_{i} of the Taylor polynomial.

13. We look for a solution of the form

$$y''(x) = y(0) + y'(0)x + \frac{1}{2!}y''(0)x^{2} + \frac{1}{3!}y'''(0)x^{3} + \frac{1}{4!}y^{(4)}(0)x^{4} + \frac{1}{5!}y^{(5)}(0)x^{5}.$$
From $y''(x) = x + y^{2}$ we compute
$$y'''(x) = 1 + 2yy'$$

$$y^{(4)}(x) = 2yy'' + 2(y')^{2}$$

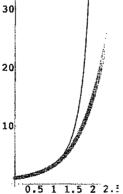
$$y^{(5)}(x) = 2yy''' + 6y'y''.$$
20

Using
$$y(0) = 1$$
 and $y'(0) = 1$ we find

$$y''(0) = 1$$
, $y'''(0) = 3$, $y^{(4)}(0) = 4$, $y^{(5)}(0) = 12$.

An approximate solution is

$$y(x) = 1 + x + \frac{1}{2}x^2 + \frac{1}{2}x^3 + \frac{1}{6}x^4 + \frac{1}{10}x^5.$$



У

218

У 10

5

30

20

10

14. We look for a solution of the form

$$y(x) = y(0) + y'(0)x + \frac{1}{2!}y''(0)x^2 + \frac{1}{3!}y'''(0)x^3 + \frac{1}{4!}y^{(4)}(0)x^4 + \frac{1}{5!}y^{(5)}(0)x^5.$$

From $y''(x) = 1 - y^2$ we compute

$$y'''(x) = -2yy'$$
$$y^{(4)}(x) = -2yy'' - 2(y')^2$$
$$y^{(5)}(x) = -2yy''' - 6y'y''$$

Using y(0) = 2 and y'(0) = 3 we find

$$y''(0) = -3, \quad y'''(0) = -12, \quad y^{(4)}(0) = -6, \quad y^{(5)}(0) = 102.$$

An approximate solution is

$$y(x) = 2 + 3x - \frac{3}{2}x^2 - 2x^3 - \frac{1}{4}x^4 + \frac{17}{20}x^5$$

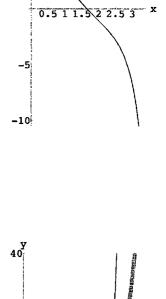
15. We look for a solution of the form $y(x) = y(0) + y'(0)x + \frac{1}{2!}y''(0)x^{2} + \frac{1}{3!}y'''(0)x^{3} + \frac{1}{4!}y^{(4)}(0)x^{4} + \frac{1}{5!}y^{(5)}(0)x^{5}.$ From $y''(x) = x^{2} + y^{2} - 2y'$ we compute y'''(x) = 2x + 2yy' - 2y'' $y^{(4)}(x) = 2 + 2(y')^{2} + 2yy'' - 2y'''$ $y^{(5)}(x) = 6y'y'' + 2yy''' - 2y^{(4)}.$

Using y(0) = 1 and y'(0) = 1 we find

$$y''(0) = -1, \quad y'''(0) = 4, \quad y^{(4)}(0) = -6, \quad y^{(5)}(0) = 14.$$

An approximate solution is

$$y(x) = 1 + x - \frac{1}{2}x^2 + \frac{2}{3}x^3 - \frac{1}{4}x^4 + \frac{7}{60}x^5.$$



0.511.522.533.5^x

Exercises 4.9 Nonlinear Differential Equations

16. We look for a solution of the form

$$y(x) = y(0) + y'(0)x + \frac{1}{2!}y''(0)x^2 + \frac{1}{3!}y'''(0)x^3 + \frac{1}{4!}y^{(4)}(0)x^4 + \frac{1}{5!}y^{(5)}(0)x^5 + \frac{1}{6!}y^{(6)}(0)x^6.$$

From $y''(x) = e^y$ we compute

$$y'''(x) = e^{y}y'$$

$$y^{(4)}(x) = e^{y}(y')^{2} + e^{y}y''$$

$$y^{(5)}(x) = e^{y}(y')^{3} + 3e^{y}y'y'' + e^{y}y'''$$

$$y^{(6)}(x) = e^{y}(y')^{4} + 6e^{y}(y')^{2}y'' + 3e^{y}(y'')^{2} + 4e^{y}y'y''' + e^{y}y^{(4)}.$$

Using y(0) = 0 and y'(0) = -1 we find

y''(0) = 1, y'''(0) = -1, $y^{(4)}(0) = 2$, $y^{(5)}(0) = -5$, $y^{(6)}(0) = 16$.

An approximate solution is

$$y(x) = -x + \frac{1}{2}x^2 - \frac{1}{6}x^3 + \frac{1}{12}x^4 + \frac{1}{24}x^5 + \frac{1}{45}x^6.$$

17. We need to solve $[1 + (y')^2]^{3/2} = y''$. Let u = y' so that u' = y''. The equation bec $(1 + u^2)^{3/2} = u'$ or $(1 + u^2)^{3/2} = du/dx$. Separating variables and using the substitution u = 1we have

$$\frac{du}{(1+u^2)^{3/2}} = dx \implies \int \frac{\sec^2 \theta}{\left(1+\tan^2 \theta\right)^{3/2}} d\theta = x \implies \int \frac{\sec^2 \theta}{\sec^3 \theta} d\theta = x$$
$$\implies \int \cos \theta \, d\theta = x \implies \sin \theta = x \implies \frac{u}{\sqrt{1+u^2}} = x$$
$$\implies \frac{y'}{\sqrt{1+(y')^2}} = x \implies (y')^2 = x^2 \left[1+(y')^2\right] = \frac{x^2}{1-x^2}$$
$$\implies y' = \frac{x}{\sqrt{1-x^2}} \quad (\text{for } x > 0) \implies y = -\sqrt{1-x^2} \,.$$

18. When $y = \sin x$, $y' = \cos x$, $y'' = -\sin x$, and

$$(y'')^2 - y^2 = \sin^2 x - \sin^2 x = 0$$

When $y = e^{-x}$, $y' = -e^{-x}$, $y'' = e^{-x}$, and

$$(y'')^2 - y^2 = e^{-2x} - e^{-2x} = 0.$$

220

From $(y'')^2 - y^2 = 0$ we have $y'' = \pm y$, which can be treated as two linear equations. Since linear combinations of solutions of linear homogeneous differential equations are also solutions, we see that $y = c_1 e^x + c_2 e^{-x}$ and $y = c_3 \cos x + c_4 \sin x$ must satisfy the differential equation. However, linear combinations that involve both exponential and trigonometric functions will not be solutions since the differential equation is not linear and each type of function satisfies a different linear differential equation that is part of the original differential equation.

14. Letting u = y'', separating variables, and integrating we have

$$\frac{du}{dx} = \sqrt{1+u^2}$$
, $\frac{du}{\sqrt{1+u^2}} = dx$, and $\sinh^{-1} u = x + c_1$.

Then

$$u = y'' = \sinh(x + c_1), \quad y' = \cosh(x + c_1) + c_2, \quad \text{and} \quad y = \sinh(x + c_1) + c_2x + c_3.$$

21. If the constant $-c_1^2$ is used instead of c_1^2 , then, using partial fractions,

$$y = -\int \frac{dx}{x^2 - c_1^2} = -\frac{1}{2c_1} \int \left(\frac{1}{x - c_1} - \frac{1}{x + c_1}\right) dx = \frac{1}{2c_1} \ln \left| \frac{x + c_1}{x - c_1} \right| + c_2$$

Alternatively, the inverse hyperbolic tangent can be used.

21. Let u = dx/dt so that $d^2x/dt^2 = u du/dx$. The equation becomes $u du/dx = -k^2/x^2$. Separating variables we obtain

$$u \, du = -\frac{k^2}{x^2} \, dx \implies \frac{1}{2}u^2 = \frac{k^2}{x} + c \implies \frac{1}{2}v^2 = \frac{k^2}{x} + c$$

When t = 0, $x = x_0$ and v = 0 so $0 = (k^2/x_0) + c$ and $c = -k^2/x_0$. Then

$$\frac{1}{2}v^2 = k^2 \left(\frac{1}{x} - \frac{1}{x_0}\right)$$
 and $\frac{dx}{dt} = -k\sqrt{2}\sqrt{\frac{x_0 - x}{xx_0}}$.

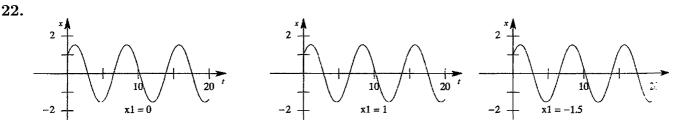
Separating variables we have

$$-\sqrt{\frac{xx_0}{x_0-x}}\,dx = k\sqrt{2}\,dt \implies t = -\frac{1}{k}\sqrt{\frac{x_0}{2}}\int\sqrt{\frac{x}{x_0-x}}\,dx$$

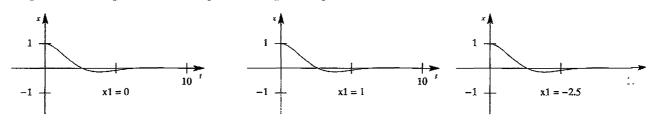
Using Mathematica to integrate we obtain

$$t = -\frac{1}{k}\sqrt{\frac{x_0}{2}} \left[-\sqrt{x(x_0 - x)} - \frac{x_0}{2} \tan^{-1} \frac{(x_0 - 2x)}{2x} \sqrt{\frac{x}{x_0 - x}} \right]$$
$$= \frac{1}{k}\sqrt{\frac{x_0}{2}} \left[\sqrt{x(x_0 - x)} + \frac{x_0}{2} \tan^{-1} \frac{x_0 - 2x}{2\sqrt{x(x_0 - x)}} \right].$$

221 http://profesoresparticulareslima.blogspot.pe/



For $d^2x/dt^2 + \sin x = 0$ the motion appears to be periodic with amplitude 1 when $x_1 =$ amplitude and period are larger for larger magnitudes of x_1 .



For $d^2x/dt^2 + dx/dt + \sin x = 0$ the motion appears to be periodic with decreasing amplitude dx/dt term could be said to have a damping effect.

- **1.** y = 0
- 2. Since $y_c = c_1 e^x + c_2 e^{-x}$, a particular solution for $y'' y = 1 + e^x$ is $y_p = A + Bxe^x$.
- 3. It is not true unless the differential equation is homogeneous. For example, $y_1 = x$ is a solution y'' + y = x, but $y_2 = 5x$ is not.
- 4. True
- 5. The set is linearly independent over $(-\infty, 0)$ and linearly dependent over $(0, \infty)$.
- 6. (a) Since $f_2(x) = 2 \ln x = 2f_1(x)$, the set of functions is linearly dependent.
 - (b) Since x^{n+1} is not a constant multiple of x^n , the set of functions is linearly independent.
 - (c) Since x + 1 is not a constant multiple of x, the set of functions is linearly independent
 - (d) Since $f_1(x) = \cos x \cos(\pi/2) \sin x \sin(\pi/2) = -\sin x = -f_2(x)$, the set of functions is ... dependent.
 - (e) Since $f_1(x) = 0 \cdot f_2(x)$, the set of functions is linearly dependent.
 - (f) Since 2x is not a constant multiple of 2, the set of functions is linearly independent.

222

- (g) Since $3(x^2) + 2(1 x^2) (2 + x^2) = 0$, the set of functions is linearly dependent.
- (h) Since $xe^{x+1} + 0(4x-5)e^x exe^x = 0$, the set of functions is linearly dependent.
- **7.** (a) The general solution is

$$y = c_1 e^{3x} + c_2 e^{-5x} + c_3 x e^{-5x} + c_4 e^x + c_5 x e^x + c_6 x^2 e^x.$$

(b) The general solution is

$$y = c_1 x^3 + c_2 x^{-5} + c_3 x^{-5} \ln x + c_4 x + c_5 x \ln x + c_6 x (\ln x)^2.$$

- 5. Variation of parameters will work for all choices of g(x), although the integral involved may not always be able to be expressed in terms of elementary functions. The method of undetermined coefficients will work for the functions in (b), (c), and (e).
- From $m^2 2m 2 = 0$ we obtain $m = 1 \pm \sqrt{3}$ so that

$$y = c_1 e^{(1+\sqrt{3})x} + c_2 e^{(1-\sqrt{3})x}.$$

1). From $2m^2 + 2m + 3 = 0$ we obtain $m = -1/2 \pm (\sqrt{5}/2)i$ so that

$$y = e^{-x/2} \left(c_1 \cos \frac{\sqrt{5}}{2} x + c_2 \sin \frac{\sqrt{5}}{2} x \right).$$

II. From $m^3 + 10m^2 + 25m = 0$ we obtain m = 0, m = -5, and m = -5 so that

$$y = c_1 + c_2 e^{-5x} + c_3 x e^{-5x}$$

12. From $2m^3 + 9m^2 + 12m + 5 = 0$ we obtain m = -1, m = -1, and m = -5/2 so that $y = c_1 e^{-5x/2} + c_2 e^{-x} + c_3 x e^{-x}$.

15. From $3m^3 + 10m^2 + 15m \div 4 = 0$ we obtain m = -1/3 and $m = -3/2 \pm (\sqrt{7}/2)i$ so that

$$y = c_1 e^{-x/3} + e^{-3x/2} \left(c_2 \cos \frac{\sqrt{7}}{2} x + c_3 \sin \frac{\sqrt{7}}{2} x \right)$$

I.4. From $2m^4 + 3m^3 + 2m^2 + 6m - 4 = 0$ we obtain m = 1/2, m = -2, and $m = \pm \sqrt{2}i$ so that

$$y = c_1 e^{x/2} + c_2 e^{-2x} + c_3 \cos \sqrt{2} x + c_4 \sin \sqrt{2} x.$$

If Applying D^4 to the differential equation we obtain $D^4(D^2 - 3D + 5) = 0$. Then

$$y = \underbrace{e^{3x/2} \left(c_1 \cos \frac{\sqrt{11}}{2} x + c_2 \sin \frac{\sqrt{11}}{2} x \right)}_{y_c} + c_3 + c_4 x + c_5 x^2 + c_6 x^3$$

and $y_p = A + Bx + Cx^2 + Dx^3$. Substituting y_p into the differential equation yields $(5A - 3B + 2C) + (5B - 6C + 6D)x + (5C - 9D)x^2 + 5Dx^3 = -2x + 4x^3$.

223

Equating coefficients gives A = -222/625, B = 46/125, C = 36/25, and D = 4/5. The general solution is

$$y = e^{3x/2} \left(c_1 \cos \frac{\sqrt{11}}{2} x + c_2 \sin \frac{\sqrt{11}}{2} x \right) - \frac{222}{625} + \frac{46}{125} x + \frac{36}{25} x^2 + \frac{4}{5} x^3.$$

16. Applying $(D-1)^3$ to the differential equation we obtain $(D-1)^3(D-2D+1) = (D-1)^5 =$ Then

$$y = \underbrace{c_1 e^x + c_2 x e^x}_{y_c} + c_3 x^2 e^x + c_4 x^3 e^x + c_5 x^4 e^x$$

and $y_p = Ax^2e^x + Bx^3e^x + Cx^4e^x$. Substituting y_p into the differential equation yields

$$12Cx^2e^x + 6Bxe^x + 2Ae^x = x^2e^x$$

Equating coefficients gives A = 0, B = 0, and C = 1/12. The general solution is

$$y = c_1 e^x + c_2 x e^x + \frac{1}{12} x^4 e^x.$$

17. Applying $D(D^2 + 1)$ to the differential equation we obtain

$$D(D^{2}+1)(D^{3}-5D^{2}+6D) = D^{2}(D^{2}+1)(D-2)(D-3) = 0$$

Then

$$y = \underbrace{c_1 + c_2 e^{2x} + c_3 e^{3x}}_{y_c} + c_4 x + c_5 \cos x + c_6 \sin x$$

and $y_p = Ax + B\cos x + C\sin x$. Substituting y_p into the differential equation yields

$$6A + (5B + 5C)\cos x + (-5B + 5C)\sin x = 8 + 2\sin x.$$

Equating coefficients gives A = 4/3, B = -1/5, and C = 1/5. The general solution is

$$y = c_1 + c_2 e^{2x} + c_3 e^{3x} + \frac{4}{3}x - \frac{1}{5}\cos x + \frac{1}{5}\sin x.$$

18. Applying D to the differential equation we obtain $D(D^3 - D^2) = D^3(D-1) = 0$. Then

$$y = \underbrace{c_1 + c_2 x + c_3 e^x}_{y_c} + c_4 x^2$$

and $y_p = Ax^2$. Substituting y_p into the differential equation yields -2A = 6. Equating coefficients gives A = -3. The general solution is

$$y = c_1 + c_2 x + c_3 e^x - 3x^2.$$

19. The auxiliary equation is $m^2 - 2m + 2 = [m - (1+i)][m - (1-i)] = 0$, so $y_c = c_1 e^x \sin x + c_2 = and$

$$W = \begin{vmatrix} e^x \sin x & e^x \cos x \\ e^x \cos x + e^x \sin x & -e^x \sin x + e^x \cos x \end{vmatrix} = -e^{2x}$$

224

Identifying $f(x) = e^x \tan x$ we obtain

$$u_1' = -\frac{(e^x \cos x)(e^x \tan x)}{-e^{2x}} = \sin x$$

$$u_2' = \frac{(e^x \sin x)(e^x \tan x)}{-e^{2x}} = -\frac{\sin^2 x}{\cos x} = \cos x - \sec x.$$

Then $u_1 = -\cos x$, $u_2 = \sin x - \ln |\sec x + \tan x|$, and

$$y = c_1 e^x \sin x + c_2 e^x \cos x - e^x \sin x \cos x + e^x \sin x \cos x - e^x \cos x \ln |\sec x + \tan x|$$

 $= c_1 e^x \sin x + c_2 e^x \cos x - e^x \cos x \ln |\sec x + \tan x|.$

21. The auxiliary equation is $m^2 - 1 = 0$, so $y_c = c_1 e^x + c_2 e^{-x}$ and

$$W = \begin{vmatrix} e^x & e^{-x} \\ e^x & -e^{-x} \end{vmatrix} = -2.$$

Elentifying $f(x) = 2e^x/(e^x + e^{-x})$ we obtain

$$u_1' = \frac{1}{e^x + e^{-x}} = \frac{e^x}{1 + e^{2x}}$$

$$u_2' = -\frac{e^{2x}}{e^x + e^{-x}} = -\frac{e^{3x}}{1 + e^{2x}} = -e^x + \frac{e^x}{1 + e^{2x}}.$$

Then $u_1 = \tan^{-1} e^x$, $u_2 = -e^x + \tan^{-1} e^x$, and

$$y = c_1 e^x + c_2 e^{-x} + e^x \tan^{-1} e^x - 1 + e^{-x} \tan^{-1} e^x.$$

T. The auxiliary equation is $6m^2 - m - 1 = 0$ so that

$$y = c_1 x^{1/2} + c_2 x^{-1/3}.$$

The auxiliary equation is $2m^3 + 13m^2 + 24m + 9 = (m+3)^2(m+1/2) = 0$ so that $u = c_1 x^{-3} + c_2 x^{-3} \ln x + c_3 x^{-1/2}$.

The auxiliary equation is
$$m^2 - 5m + 6 = (m - 2)(m - 3) = 0$$
 and a particular solution is $y = x^4 - x^2 \ln x$ so that

$$y = c_1 x^2 + c_2 x^3 + x^4 - x^2 \ln x.$$

The auxiliary equation is $m^2 - 2m + 1 = (m-1)^2 = 0$ and a particular solution is $y_p = \frac{1}{4}x^3$ so that $y = c_1 x + c_2 x \ln x + \frac{1}{4}x^3$.

a) The auxiliary equation is $m^2 + \omega^2 = 0$, so $y_c = c_1 \cos \omega x + c_2 \sin \omega x$. When $\omega \neq \alpha$, $y_p = A \cos \alpha x + B \sin \alpha x$ and

 $y = c_1 \cos \omega x + c_2 \sin \omega x + A \cos \alpha x + B \sin \alpha x.$

225

When $\omega = \alpha$, $y_p = Ax \cos \omega x + Bx \sin \omega x$ and

 $y = c_1 \cos \omega x + c_2 \sin \omega x + Ax \cos \omega x + Bx \sin \omega x.$

b) The auxiliary equation is $m^2 - \omega^2 = 0$, so $y_c = c_1 e^{\omega x} + c_2 e^{-\omega x}$. When $\omega \neq \alpha$, $y_p = A e^{\alpha x}$

$$y = c_1 e^{\omega x} + c_2 e^{-\omega x} + A e^{\alpha x}$$

When $\omega = \alpha$, $y_p = Axe^{\omega x}$ and

$$y = c_1 e^{\omega x} + c_2 e^{-\omega x} + A x e^{\omega x}.$$

26. (a) If $y = \sin x$ is a solution then so is $y = \cos x$ and $m^2 + 1$ is a factor of the auxiliary equation $m^4 + 2m^3 + 11m^2 + 2m + 10 = 0$. Dividing by $m^2 + 1$ we get $m^2 + 2m + 10$, which has : $-1 \pm 3i$. The general solution of the differential equation is

$$y = c_1 \cos x + c_2 \sin x + e^{-x} (c_3 \cos 3x + c_4 \sin 3x).$$

- (b) The auxiliary equation is $m(m+1) = m^2 + m = 0$, so the associated homogeneous difference equation is y'' + y' = 0. Letting $y = c_1 + c_2 e^{-x} + \frac{1}{2}x^2 x$ and computing y'' + y' we a Thus, the differential equation is y'' + y' = x.
- 27. (a) The auxiliary equation is $m^4 2m^2 + 1 = (m^2 1)^2 = 0$, so the general solution : differential equation is

 $y = c_1 \sinh x + c_2 \cosh x + c_3 x \sinh x + c_4 x \cosh x.$

- (b) Since both $\sinh x$ and $x \sinh x$ are solutions of the associated homogeneous differential equation a particular solution of $y^{(4)} 2y'' + y = \sinh x$ has the form $y_p = Ax^2 \sinh x + Bx^2 \cosh x$
- 25. Since $y'_1 = 1$ and $y''_1 = 0$, $x^2y''_1 (x^2 + 2x)y'_1 + (x + 2)y_1 = -x^2 2x + x^2 + 2x = 0$, and $y_1 = x$ solution of the associated homogeneous equation. Using the method of reduction of order. Then y' = xu' + u and y'' = xu'' + 2u', so

$$x^{2}y'' - (x^{2} + 2x)y' + (x + 2)y = x^{3}u'' + 2x^{2}u' - x^{3}u' - 2x^{2}u' - x^{2}u - 2xu + x^{2}u + 2xu = x^{3}u'' - x^{3}u' = x^{3}(u'' - u').$$

To find a second solution of the homogeneous equation we note that $u = e^x$ is a solut: u' = 0. Thus, $y_c = c_1 x + c_2 x e^x$. To find a particular solution we set $x^3(u'' - u') =$ that u'' - u' = 1. This differential equation has a particular solution of the form Ax. Substitute find A = -1, so a particular solution of the original differential equation is $y_p = -x^2$ as general solution is $y = c_1 x + c_2 x e^x - x^2$.

The auxiliary equation is $m^2 - 2m + 2 = 0$ so that $m = 1 \pm i$ and $y = e^x(c_1 \cos x + c_2 \sin x)$. (z = 2) = 0 and $y(\pi) = -1$ we obtain $c_1 = e^{-\pi}$ and $c_2 = 0$. Thus, $y = e^{x - \pi} \cos x$.

226

- 30. The auxiliary equation is $m^2 + 2m + 1 = (m+1)^2 = 0$, so that $y = c_1 e^{-x} + c_2 x e^{-x}$. Setting y(-1) = 0and y'(0) = 0 we get $c_1 e - c_2 e = 0$ and $-c_1 + c_2 = 0$. Thus $c_1 = c_2$ and $y = c_1(e^{-x} + xe^{-x})$ is a solution of the boundary-value problem for any real number c_1 .
- 31. The auxiliary equation is $m^2 1 = (m 1)(m + 1) = 0$ so that $m = \pm 1$ and $y = c_1 e^x + c_2 e^{-x}$. Assuming $y_p = Ax + B + C \sin x$ and substituting into the differential equation we find A = -1, B = 0, and $C = -\frac{1}{2}$. Thus $y_p = -x - \frac{1}{2} \sin x$ and

$$y = c_1 e^x + c_2 e^{-x} - x - \frac{1}{2} \sin x.$$

Setting y(0) = 2 and y'(0) = 3 we obtain

$$c_1 + c_2 = 2$$

 $c_1 - c_2 - \frac{3}{2} = 3.$

Solving this system we find $c_1 = \frac{13}{4}$ and $c_2 = -\frac{5}{4}$. The solution of the initial-value problem is

$$y = \frac{13}{4}e^x - \frac{5}{4}e^{-x} - x - \frac{1}{2}\sin x.$$

32. The auxiliary equation is $m^2 + 1 = 0$, so $y_c = c_1 \cos x + c_2 \sin x$ and

$$W = \begin{vmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{vmatrix} = 1.$$

Identifying $f(x) = \sec^3 x$ we obtain

$$u'_1 = -\sin x \sec^3 x = -\frac{\sin x}{\cos^3 x}$$
$$u'_2 = \cos x \sec^3 x = \sec^2 x.$$

Then

$$u_1 = -\frac{1}{2} \frac{1}{\cos^2 x} = -\frac{1}{2} \sec^2 x$$

$$u_2 = \tan x$$

Thus

$$y = c_1 \cos x + c_2 \sin x - \frac{1}{2} \cos x \sec^2 x + \sin x \tan x$$
$$= c_1 \cos x + c_2 \sin x - \frac{1}{2} \sec x + \frac{1 - \cos^2 x}{\cos x}$$
$$= c_3 \cos x + c_2 \sin x + \frac{1}{2} \sec x.$$

: nd

227

$$y' = -c_3 \sin x + c_2 \cos x + \frac{1}{2} \sec x \tan x.$$

The initial conditions imply

$$c_3 + \frac{1}{2} = 1$$

 $c_2 = \frac{1}{2}.$

Thus, $c_3 = c_2 = 1/2$ and

$$y = \frac{1}{2}\cos x + \frac{1}{2}\sin x + \frac{1}{2}\sec x.$$

3 Let = y' so that u' = y''. The equation becomes u du/dx = 4x. Separating variables we obt

$$u \, du = 4x \, dx \implies \frac{1}{2}u^2 = 2x^2 + c_1 \implies u^2 = 4x^2 + c_2.$$

When x = 1, y' = u = 2, so $4 = 4 + c_2$ and $c_2 = 0$. Then

$$u^2 = 4x^2 \implies \frac{dy}{dx} = 2x \text{ or } \frac{dy}{dx} = -2x$$

 $\implies y = x^2 + c_3 \text{ or } y = -x^2 + c_4.$

When x = 1, y = 5, so $5 = 1 + c_3$ and $5 = -1 + c_4$. Thus $c_3 = 4$ and $c_4 = 6$. We have $y = -x^2 + 6$. Note however that when $y = -x^2 + 6$, y' = -2x and $y'(1) = -2 \neq 2$. Thus, litter of the initial-value problem is $y = x^2 + 4$.

Here y' = y' so that y'' = u du/dy. The equation becomes $2u du/dy = 3y^2$. Separating variable y'' = u du/dy.

$$2u \, du = 3y^2 \, dy \implies u^2 = y^3 + c_1.$$

When y = 0, y = 1 and y' = u = 1 so $1 = 1 + c_1$ and $c_1 = 0$. Then

$$u^{2} = y^{3} \implies \left(\frac{dy}{dx}\right)^{2} = y^{3} \implies \frac{dy}{dx} = y^{3/2} \implies y^{-3/2} dy = dx$$
$$\implies -2y^{-1/2} = x + c_{2} \implies y = \frac{4}{(x + c_{2})^{2}}.$$

Then, x = 0, y = 1, so $1 = 4/c_2^2$ and $c_2 = \pm 2$. Thus, $y = 4/(x+2)^2$ and $y = 4/(x-2)^2$.

5. E The auxiliary equation is $12m^4 + 64m^3 + 59m^2 - 23m - 12 = 0$ and has roots -4. $-\frac{1}{2}$ and $\frac{1}{2}$. The general solution is

$$y = c_1 e^{-4x} + c_2 e^{-3x/2} + c_3 e^{-x/3} + c_4 e^{x/2}.$$

228

(b) The system of equations is

$$c_{1} + c_{2} + c_{3} + c_{4} = -1$$

$$-4c_{1} - \frac{3}{2}c_{2} - \frac{1}{3}c_{3} + \frac{1}{2}c_{4} = 2$$

$$16c_{1} + \frac{9}{4}c_{2} + \frac{1}{9}c_{3} + \frac{1}{4}c_{4} = 5$$

$$-64c_{1} - \frac{27}{8}c_{2} - \frac{1}{27}c_{3} + \frac{1}{8}c_{4} = 0.$$

Using a CAS we find $c_1 = -\frac{73}{495}$, $c_2 = \frac{109}{35}$, $c_3 = -\frac{3726}{385}$, and $c_4 = \frac{257}{45}$. The solution of the initial-value problem is

$$y = -\frac{73}{495}e^{-4x} + \frac{109}{35}e^{-3x/2} - \frac{3726}{385}e^{-x/3} + \frac{257}{45}e^{x/2}.$$

Consider xy'' + y' = 0 and look for a solution of the form $y = x^m$. Substituting into the differential equation we have

$$xy'' + y' = m(m-1)x^{m-1} + mx^{m-1} = m^2 x^{m-1}.$$

Thus, the general solution of xy'' + y' = 0 is $y_c = c_1 + c_2 \ln x$. To find a particular solution of $xy'' + y' = -\sqrt{x}$ we use variation of parameters. The Wronskian is

$$W = \begin{vmatrix} 1 & \ln x \\ 0 & 1/x \end{vmatrix} = \frac{1}{x}$$

Identifying $f(x) = -x^{-1/2}$ we obtain

$$u'_1 = \frac{x^{-1/2} \ln x}{1/x} = \sqrt{x} \ln x$$
 and $u'_2 = \frac{-x^{-1/2}}{1/x} = -\sqrt{x}$,

so that

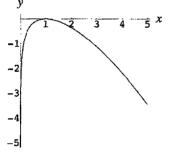
$$u_1 = x^{3/2} \left(\frac{2}{3}\ln x - \frac{4}{9}\right)$$
 and $u_2 = -\frac{2}{3}x^{3/2}$.

Then

$$y_p = x^{3/2} \left(\frac{2}{3}\ln x - \frac{4}{9}\right) - \frac{2}{3}x^{3/2}\ln x = -\frac{4}{9}x^{3/2}$$

and the general solution of the differential equation is

$$y = c_1 + c_2 \ln x - \frac{4}{9} x^{3/2}.$$



229

The initial conditions are y(1) = 0 and y'(1) = 0. These imply that $c_1 = \frac{4}{9}$ and $c_2 = \frac{2}{3}$. solution of the initial-value problem is

$$y = \frac{4}{9} + \frac{2}{3}\ln x - \frac{4}{9}x^{3/2}.$$

The graph is shown above.

37. From (D-2)x + (D-2)y = 1 and Dx + (2D-1)y = 3 we obtain (D-1)(D-2)y = -6 :. $\Box x = 3 - (2D-1)y$. Then

$$y = c_1 e^{2t} + c_2 e^t - 3$$
 and $x = -c_2 e^t - \frac{3}{2} c_1 e^{2t} + c_3$.

Substituting into (D-2)x + (D-2)y = 1 gives $c_3 = \frac{5}{2}$ so that

$$x = -c_2 e^t - \frac{3}{2}c_1 e^{2t} + \frac{5}{2}$$

35. From
$$(D-2)x - y = t - 2$$
 and $-3x + (D-4)y = -4t$ we obtain $(D-1)(D-5)x = 9 - 8t$. The set of the set o

$$x = c_1 e^t + c_2 e^{5t} - \frac{8}{5}t - \frac{3}{25}t$$

 $y = c_1 \cos t + c_2 \sin t - \frac{2}{3} \cos 2t + \frac{7}{3} \sin 2t$

and

$$y = (D-2)x - t + 2 = -c_1e^t + 3c_2e^{5t} + \frac{16}{25} + \frac{11}{25}t.$$

39. From $(D-2)x - y = -e^t$ and $-3x + (D-4)y = -7e^t$ we obtain $(D-1)(D-5)x = -4e^t$ so $x = c_1e^t + c_2e^{5t} + te^t$.

Then

$$y = (D-2)x + e^t = -c_1e^t + 3c_2e^{5t} - te^t + 2e^t.$$

40. From $(D+2)x + (D+1)y = \sin 2t$ and $5x + (D+3)y = \cos 2t$ we obtain $(D^2+5)y = 2\cos 2t - 7\sin t$. Then

and

$$x = -\frac{1}{5}(D+3)y + \frac{1}{5}\cos 2t$$

= $\left(\frac{1}{5}c_1 - \frac{3}{5}c_2\right)\sin t + \left(-\frac{1}{5}c_2 - \frac{3}{5}c_1\right)\cos t - \frac{5}{3}\sin 2t - \frac{1}{3}\cos 2t.$

5 Modeling with Higher-Order Differential Equations

Exercises 5.1

Linear Models: Initial-Value Problems

1. From $\frac{1}{8}x'' + 16x = 0$ we obtain

$$x = c_1 \cos 8\sqrt{2} t + c_2 \sin 8\sqrt{2} t$$

so that the period of motion is $2\pi/8\sqrt{2} = \sqrt{2}\pi/8$ seconds.

2. From 20x'' + kx = 0 we obtain

$$x = c_1 \cos \frac{1}{2} \sqrt{\frac{k}{5}} t + c_2 \sin \frac{1}{2} \sqrt{\frac{k}{5}} t$$

so that the frequency $2/\pi = \frac{1}{4}\sqrt{k/5}\pi$ and k = 320 N/m. If 80x'' + 320x = 0 then

 $x = c_1 \cos 2t + c_2 \sin 2t$

so that the frequency is $2/2\pi = 1/\pi$ cycles/s.

3. From $\frac{3}{4}x'' + 72x = 0$, x(0) = -1/4, and x'(0) = 0 we obtain $x = -\frac{1}{4}\cos 4\sqrt{6}t$.

 $\therefore \text{ From } \frac{3}{4}x'' + 72x = 0, \ x(0) = 0, \text{ and } x'(0) = 2 \text{ we obtain } x = \frac{\sqrt{6}}{12} \sin 4\sqrt{6} t.$

5. From
$$\frac{5}{8}x'' + 40x = 0$$
, $x(0) = 1/2$, and $x'(0) = 0$ we obtain $x = \frac{1}{2}\cos 8t$.

(a)
$$x(\pi/12) = -1/4$$
, $x(\pi/8) = -1/2$, $x(\pi/6) = -1/4$, $x(\pi/4) = 1/2$, $x(9\pi/32) = \sqrt{2}/4$.

- (b) $x' = -4\sin 8t$ so that $x'(3\pi/16) = 4$ ft/s directed downward.
- (c) If $x = \frac{1}{2}\cos 8t = 0$ then $t = (2n+1)\pi/16$ for n = 0, 1, 2, ...

5. From 50x'' + 200x = 0, x(0) = 0, and x'(0) = -10 we obtain $x = -5 \sin 2t$ and $x' = -10 \cos 2t$.

- From 20x'' + 20x = 0, x(0) = 0, and x'(0) = -10 we obtain $x = -10 \sin t$ and $x' = -10 \cos t$.
 - (a) The 20 kg mass has the larger amplitude.
 - (b) 20 kg: $x'(\pi/4) = -5\sqrt{2}$ m/s, $x'(\pi/2) = 0$ m/s; 50 kg: $x'(\pi/4) = 0$ m/s, $x'(\pi/2) = 10$ m/s
 - (c) If $-5\sin 2t = -10\sin t$ then $\sin t(\cos t 1) = 0$ so that $t = n\pi$ for n = 0, 1, 2, ..., placing both masses at the equilibrium position. The 50 kg mass is moving upward; the 20 kg mass is moving upward when n is even and downward when n is odd.

231

Exercises 5.1 Linear Models: Initial-Value Problems

8. From x'' + 16x = 0, x(0) = -1, and x'(0) = -2 we obtain

$$x = -\cos 4t - \frac{1}{2}\sin 4t = \frac{\sqrt{5}}{2}\sin(4t - 4.249).$$

The period is $\pi/2$ seconds and the amplitude is $\sqrt{5}/2$ feet. In 4π seconds it will make 8 comcycles.

9. From $\frac{1}{4}x'' + x = 0$, x(0) = 1/2, and x'(0) = 3/2 we obtain

$$x = \frac{1}{2}\cos 2t + \frac{3}{4}\sin 2t = \frac{\sqrt{13}}{4}\sin(2t + 0.588).$$

10. From 1.6x'' + 40x = 0, x(0) = -1/3, and x'(0) = 5/4 we obtain $x = -\frac{1}{3}\cos 5t + \frac{1}{4}\sin 5t = \frac{5}{12}\sin(5t - 0.927).$

If
$$x = 5/24$$
 then $t = \frac{1}{5} \left(\frac{\pi}{6} + 0.927 + 2n\pi \right)$ and $t = \frac{1}{5} \left(\frac{5\pi}{6} + 0.927 + 2n\pi \right)$ for $n = 0, 1, 2, ...$

11. From 2x'' + 200x = 0, x(0) = -2/3, and x'(0) = 5 we obtain

- (a) $x = -\frac{2}{3}\cos 10t + \frac{1}{2}\sin 10t = \frac{5}{6}\sin(10t 0.927).$
- (b) The amplitude is 5/6 ft and the period is $2\pi/10 = \pi/5$
- (c) $3\pi = \pi k/5$ and k = 15 cycles.
- (d) If x = 0 and the weight is moving downward for the second time, then 10t 0.927 = -t = 0.721 s.
- (e) If $x' = \frac{25}{3}\cos(10t 0.927) = 0$ then $10t 0.927 = \pi/2 + n\pi$ or $t = (2n+1)\pi/20 + 0.011$ $n = 0, 1, 2, \dots$.

(f)
$$x(3) = -0.597$$
 ft

(g)
$$x'(3) = -5.814$$
 ft/s

- (h) $x''(3) = 59.702 \text{ ft/s}^2$
- (i) If x = 0 then $t = \frac{1}{10}(0.927 + n\pi)$ for n = 0, 1, 2, ... The velocity at these times is $x' = \pm 8.33$ ft/s.
- (j) If x = 5/12 then $t = \frac{1}{10}(\pi/6 + 0.927 + 2n\pi)$ and $t = \frac{1}{10}(5\pi/6 + 0.927 + 2n\pi)$ for n = 0, 1.
- (k) If x = 5/12 and x' < 0 then $t = \frac{1}{10}(5\pi/6 + 0.927 + 2n\pi)$ for n = 0, 1, 2, ...

12. From x'' + 9x = 0, x(0) = -1, and $x'(0) = -\sqrt{3}$ we obtain

$$x = -\cos 3t - \frac{\sqrt{3}}{3}\sin 3t = \frac{2}{\sqrt{3}}\sin\left(3t + \frac{4\pi}{3}\right)$$

and $x' = 2\sqrt{3}\cos(3t + 4\pi/3)$. If x' = 3 then $t = -7\pi/18 + 2n\pi/3$ and $t = -\pi/2 + 2\pi^2$ $n = 1, 2, 3, \dots$

13. From $k_1 = 40$ and $k_2 = 120$ we compute the effective spring constant $k = 4(40)(120)/10^{\circ} = 100$ Now, m = 20/32 so k/m = 120(32)/20 = 192 and x'' + 192x = 0. Using x(0) = 0 and x'(0) = 0 obtain $x(t) = \frac{\sqrt{3}}{12} \sin 8\sqrt{3} t$.

232

14. Let *m* be the mass and k_1 and k_2 the spring constants. Then $k = 4k_1k_2/(k_1 + k_2)$ is the effective spring constant of the system. Since the initial mass stretches one spring $\frac{1}{3}$ foot and another spring $\frac{1}{2}$ foot, using F = ks, we have $\frac{1}{3}k_1 = \frac{1}{2}k_2$ or $2k_1 = 3k_2$. The given period of the combined system is $2\pi/\omega = \pi/15$, so $\omega = 30$. Since a mass weighing 8 pounds is $\frac{1}{4}$ slug, we have from $w^2 = k/m$

$$30^2 = \frac{k}{1/4} = 4k$$
 or $k = 225$.

We now have the system of equations

$$\frac{4k_1k_2}{k_1 + k_2} = 225$$
$$2k_1 = 3k_2$$

Solving the second equation for k_1 and substituting in the first equation, we obtain

$$\frac{4(3k_2/2)k_2}{3k_2/2+k_2} = \frac{12k_2^2}{5k_2} = \frac{12k_2}{5} = 225.$$

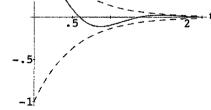
Thus, $k_2 = 375/4$ and $k_1 = 1125/8$. Finally, the weight of the first mass is

$$32m = \frac{k_1}{3} = \frac{1125/8}{3} = \frac{375}{8} \approx 46.88$$
 lb.

- For large values of t the differential equation is approximated by x'' = 0. The solution of this equation is the linear function $x = c_1 t + c_2$. Thus, for large time, the restoring force will have lecayed to the point where the spring is incapable of returning the mass, and the spring will simply keep on stretching.
- If. As t becomes larger the spring constant increases; that is, the spring is stiffening. It would seem that the oscillations would become periodic and the spring would oscillate more rapidly. It is likely that the amplitudes of the oscillations would decrease as t increases.
- **L** a) above (b) heading upward
- Le a) below (b) from rest
- La a) below (b) heading upward
- **1** a) above (b) heading downward
- From $\frac{1}{8}x'' + x' + 2x = 0$, x(0) = -1, and x'(0) = 8 we obtain $x = 4te^{-4t} e^{-4t}$ and $= 8e^{-4t} 16te^{-4t}$. If x = 0 then t = 1/4 second. If x' = 0 then t = 1/2 second and the entreme displacement is $x = e^{-2}$ feet.
- \therefore From $\frac{1}{4}x'' + \sqrt{2}x' + 2x = 0$, x(0) = 0, and x'(0) = 5 we obtain $x = 5te^{-2\sqrt{2}t}$ and

233

 $x' = 5e^{-2\sqrt{2}t} \left(1 - 2\sqrt{2}t\right)$. If x' = 0 then $t = \sqrt{2}/4$ second and the extreme displacement $x = 5\sqrt{2} e^{-1}/4$ feet. 23. (a) From x'' + 10x' + 16x = 0, x(0) = 1, and x'(0) = 0 we obtain $x = \frac{4}{3}e^{-2t} - \frac{1}{3}e^{-8t}$. (b) From x'' + x' + 16x = 0, x(0) = 1, and x'(0) = -12 then $x = -\frac{2}{3}e^{-2t} + \frac{5}{3}e^{-8t}$. 24. (a) $x = \frac{1}{3}e^{-8t} \left(4e^{6t} - 1 \right)$ is not zero for $t \ge 0$; the extreme displacement is x(0) = 1 meter. (b) $x = \frac{1}{3}e^{-8t} \left(5 - 2e^{6t} \right) = 0$ when $t = \frac{1}{6} \ln \frac{5}{2} \approx 0.153$ second; if $x' = \frac{4}{3}e^{-8t} \left(e^{6t} - 10 \right) = 0$ $t = \frac{1}{6} \ln 10 \approx 0.384$ second and the extreme displacement is x = -0.232 meter. 25. (a) From 0.1x'' + 0.4x' + 2x = 0, x(0) = -1, and x'(0) = 0 we obtain $x = e^{-2t} \left[-\cos 4t - \frac{1}{2}\sin - \frac{1}{2$ (b) $x = \frac{\sqrt{5}}{2}e^{-2t}\sin(4t + 4.25)$ (c) If x = 0 then $4t + 4.25 = 2\pi, 3\pi, 4\pi, \ldots$ so that the first time heading upward is t = 1.294 seconds. 26. a) From $\frac{1}{4}x'' + x' + 5x = 0$, x(0) = 1/2, and x'(0) = 1 we obtain $x = e^{-2t} \left(\frac{1}{2}\cos 4t + \frac{1}{2}\sin 4t + \frac{1}$ b) $x = \frac{1}{\sqrt{2}}e^{-2t}\sin\left(4t + \frac{\pi}{4}\right).$ c) If x = 0 then $4t + \pi/4 = \pi$, 2π , 3π , ... so that the times heading downward are $t = (7+8n^{-1})^{-1}$ for $n = 0, 1, 2, \ldots$. d)



27. From $\frac{5}{16}x'' + \beta x' + 5x = 0$ we find that the roots of the auxiliary equation are $m = -\frac{8}{5}\beta \pm \frac{4}{5}\sqrt{4\beta^2}$

- (a) If $4\beta^2 25 > 0$ then $\beta > 5/2$.
- b) If $4\beta^2 25 = 0$ then $\beta = 5/2$.
- · c) If $4\beta^2 25 < 0$ then $0 < \beta < 5/2$.

25. From $0.75x'' + \beta x' + 6x = 0$ and $\beta > 3\sqrt{2}$ we find that the roots of the auxiliary equation at

234

 $m = -\frac{2}{3}\beta \pm \frac{2}{3}\sqrt{\beta^2 - 18} \text{ and}$ $x = e^{-2\beta t/3} \left[c_1 \cosh \frac{2}{3}\sqrt{\beta^2 - 18} t + c_2 \sinh \frac{2}{3}\sqrt{\beta^2 - 18} t \right].$

If x(0) = 0 and x'(0) = -2 then $c_1 = 0$ and $c_2 = -3/\sqrt{\beta^2 - 18}$. If $\frac{1}{2}x'' + \frac{1}{2}x' + 6x = 10\cos 3t$, x(0) = 2, and x'(0) = 0 then

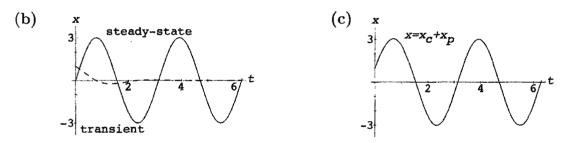
$$x_c = e^{-t/2} \left(c_1 \cos \frac{\sqrt{47}}{2} t + c_2 \sin \frac{\sqrt{47}}{2} t \right)$$

and $x_p = \frac{10}{3}(\cos 3t + \sin 3t)$ so that the equation of motion is

$$x = e^{-t/2} \left(-\frac{4}{3} \cos \frac{\sqrt{47}}{2} t - \frac{64}{3\sqrt{47}} \sin \frac{\sqrt{47}}{2} t \right) + \frac{10}{3} (\cos 3t + \sin 3t).$$

(a) If $x'' + 2x' + 5x = 12\cos 2t + 3\sin 2t$, x(0) = 1, and x'(0) = 5 then $x_c = e^{-t}(c_1\cos 2t + c_2\sin 2t)$ and $x_p = 3\sin 2t$ so that the equation of motion is

$$x = e^{-t}\cos 2t + 3\sin 2t.$$



From $x'' + 8x' + 16x = 8\sin 4t$, x(0) = 0, and x'(0) = 0 we obtain $x_c = c_1 e^{-4t} + c_2 t e^{-4t}$ and $x_p = -\frac{1}{4}\cos 4t$ so that the equation of motion is

$$x = \frac{1}{4}e^{-4t} + te^{-4t} - \frac{1}{4}\cos 4t.$$

From $x'' + 8x' + 16x = e^{-t} \sin 4t$, x(0) = 0, and x'(0) = 0 we obtain $x_c = c_1 e^{-4t} + c_2 t e^{-4t}$ and $x_p = -\frac{24}{625} e^{-t} \cos 4t - \frac{7}{625} e^{-t} \sin 4t$ so that

$$x = \frac{1}{625}e^{-4t}(24+100t) - \frac{1}{625}e^{-t}(24\cos 4t + 7\sin 4t).$$

As $t \to \infty$ the displacement $x \to 0$.

From $2x'' + 32x = 68e^{-2t}\cos 4t$, x(0) = 0, and x'(0) = 0 we obtain $x_c = c_1\cos 4t + c_2\sin 4t$ and $y_p = \frac{1}{2}e^{-2t}\cos 4t - 2e^{-2t}\sin 4t$ so that

$$x = -\frac{1}{2}\cos 4t + \frac{9}{4}\sin 4t + \frac{1}{2}e^{-2t}\cos 4t - 2e^{-2t}\sin 4t$$

Since $x = \frac{\sqrt{85}}{4}\sin(4t - 0.219) - \frac{\sqrt{17}}{2}e^{-2t}\sin(4t - 2.897)$, the amplitude approaches $\sqrt{85}/4$ as $t \to \infty$.

Exercises 5.1 Linear Models: Initial-Value Problems

- 35. (a) By Hooke's law the external force is F(t) = kh(t) so that $mx'' + \beta x' + kx = kh(t)$.
 - b) From $\frac{1}{2}x'' + 2x' + 4x = 20\cos t$, x(0) = 0, and x'(0) = 0 we obtain $x_c = e^{-2t}(c_1\cos 2t + c_2 + c_2)$ and $x_p = \frac{56}{13}\cos t + \frac{32}{13}\sin t$ so that

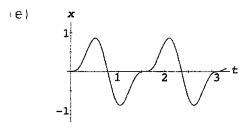
$$x = e^{-2t} \left(-\frac{56}{13} \cos 2t - \frac{72}{13} \sin 2t \right) + \frac{56}{13} \cos t + \frac{32}{13} \sin t$$

if. a From $100x'' + 1600x = 1600 \sin 8t$, x(0) = 0, and x'(0) = 0 we obtain $x_c = c_1 \cos 4t + c_1 + and x_p = -\frac{1}{3} \sin 8t$ so that by a trig identity

$$x = \frac{2}{3}\sin 4t - \frac{1}{3}\sin 8t = \frac{2}{3}\sin 4t - \frac{2}{3}\sin 4t \cos 4t.$$

- b. If $x = \frac{1}{3}\sin 4t(2 2\cos 4t) = 0$ then $t = n\pi/4$ for n = 0, 1, 2, ...
- c) If $x' = \frac{8}{3}\cos 4t \frac{8}{3}\cos 8t = \frac{8}{3}(1 \cos 4t)(1 + 2\cos 4t) = 0$ then $t = \pi/3 + n\pi/2$ and $t = \pi/6 1$ for n = 0, 1, 2, ... at the extreme values. Note: There are many other values of t for x' = 0.

d)
$$x(\pi/6 + n\pi/2) = \sqrt{3}/2$$
 cm and $x(\pi/3 + n\pi/2) = -\sqrt{3}/2$ cm



37. From $x'' + 4x = -5\sin 2t + 3\cos 2t$, x(0) = -1, and x'(0) = 1 we obtain $x_c = c_1 \cos 2t + c_1 + \frac{3}{4}t \sin 2t + \frac{5}{4}t \cos 2t$, and

$$x = -\cos 2t - \frac{1}{8}\sin 2t + \frac{3}{4}t\sin 2t + \frac{5}{4}t\cos 2t.$$

35. From $x'' + 9x = 5 \sin 3t$, x(0) = 2, and x'(0) = 0 we obtain $x_c = c_1 \cos 3t + c_2 \sin 3t$, $x_p = -\frac{5}{2}$

$$x = 2\cos 3t + \frac{5}{18}\sin 3t - \frac{5}{6}t\cos 3t.$$

39. a) From $x'' + \omega^2 x = F_0 \cos \gamma t$, x(0) = 0, and x'(0) = 0 we obtain $x_c = c_1 \cos \omega t + c_2 \sin \omega t$ $x_p = (F_0 \cos \gamma t) / (\omega^2 - \gamma^2)$ so that

$$x = -\frac{F_0}{\omega^2 - \gamma^2} \cos \omega t + \frac{F_0}{\omega^2 - \gamma^2} \cos \gamma t.$$

b)
$$\lim_{\gamma \to \omega} \frac{F_0}{\omega^2 - \gamma^2} (\cos \gamma t - \cos \omega t) = \lim_{\gamma \to \omega} \frac{-F_0 t \sin \gamma t}{-2\gamma} = \frac{F_0}{2\omega} t \sin \omega t.$$

236

- 40. From $x'' + \omega^2 x = F_0 \cos \omega t$, x(0) = 0, and x'(0) = 0 we obtain $x_c = c_1 \cos \omega t + c_2 \sin \omega t$ and $x_p = (F_0 t/2\omega) \sin \omega t$ so that $x = (F_0 t/2\omega) \sin \omega t$.
- 41. (a) From $\cos(u-v) = \cos u \cos v + \sin u \sin v$ and $\cos(u+v) = \cos u \cos v \sin u \sin v$ we obtain $\sin u \sin v = \frac{1}{2} [\cos(u-v) \cos(u+v)]$. Letting $u = \frac{1}{2} (\gamma \omega)t$ and $v = \frac{1}{2} (\gamma + \omega)t$, the result follows.
 - (b) If $\epsilon = \frac{1}{2}(\gamma \omega)$ then $\gamma \approx \omega$ so that $x = (F_0/2\epsilon\gamma)\sin\epsilon t\sin\gamma t$.
- 42. See the article "Distinguished Oscillations of a Forced Harmonic Oscillator" by T.G. Procter in *The College Mathematics Journal*, March, 1995. In this article the author illustrates that for $F_0 = 1$, $\lambda = 0.01$, $\gamma = 22/9$, and $\omega = 2$ the system exhibits beats oscillations on the interval $[0, 9\pi]$, but that this phenomenon is transient as $t \to \infty$.

43. (a) The general solution of the homogeneous equation is $x_c(t) = c_1 e^{-\lambda t} \cos(\sqrt{\omega^2 - \lambda^2} t) + c_2 e^{-\lambda t} \sin(\sqrt{\omega^2 - \lambda^2} t)$

$$= Ae^{-\lambda t} \sin[\sqrt{\omega^2 - \lambda^2 t} + \phi],$$

where $A = \sqrt{c_1^2 + c_2^2}$, $\sin \phi = c_1/A$, and $\cos \phi = c_2/A$. Now

$$x_p(t) = \frac{F_0(\omega^2 - \gamma^2)}{(\omega^2 - \gamma^2)^2 + 4\lambda^2\gamma^2} \sin\gamma t + \frac{F_0(-2\lambda\gamma)}{(\omega^2 - \gamma^2)^2 + 4\lambda^2\gamma^2} \cos\gamma t = A\sin(\gamma t + \theta),$$

where

$$\sin\theta = \frac{\frac{F_0(-2\lambda\gamma)}{(\omega^2 - \gamma^2)^2 + 4\lambda^2\gamma^2}}{\frac{F_0}{\sqrt{\omega^2 - \gamma^2 + 4\lambda^2\gamma^2}}} = \frac{-2\lambda\gamma}{\sqrt{(\omega^2 - \gamma^2)^2 + 4\lambda^2\gamma^2}}$$

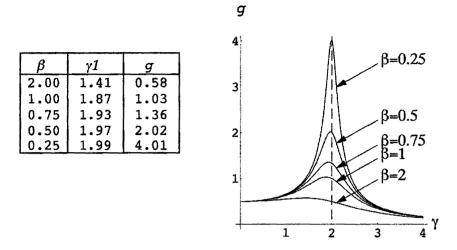
 and

$$\cos \theta = \frac{\frac{F_0(\omega^2 - \gamma^2)}{(\omega^2 - \gamma^2)^2 + 4\lambda^2 \gamma^2}}{\frac{F_0}{\sqrt{(\omega^2 - \gamma^2)^2 + 4\lambda^2 \gamma^2}}} = \frac{\omega^2 - \gamma^2}{\sqrt{(\omega^2 - \gamma^2)^2 + 4\lambda^2 \gamma^2}}$$

(b) If $g'(\gamma) = 0$ then $\gamma \left(\gamma^2 + 2\lambda^2 - \omega^2\right) = 0$ so that $\gamma = 0$ or $\gamma = \sqrt{\omega^2 - 2\lambda^2}$. The first derivative test shows that g has a maximum value at $\gamma = \sqrt{\omega^2 - 2\lambda^2}$. The maximum value of g is $g\left(\sqrt{\omega^2 - 2\lambda^2}\right) = F_0/2\lambda\sqrt{\omega^2 - \lambda^2}$.

Exercises 5.1 Linear Models: Initial-Value Problems

(c) We identify $\omega^2 = k/m = 4$, $\lambda = \beta/2$, and $\gamma_1 = \sqrt{\omega^2 - 2\lambda^2} = \sqrt{4 - \beta^2/2}$. As $\beta \to 0$. and the resonance curve grows without bound at $\gamma_1 = 2$. That is, the system approach resonance.



- 44. (a) For n = 2, $\sin^2 \gamma t = \frac{1}{2}(1 \cos 2\gamma t)$. The system is in pure resonance when $2\gamma_1/2\pi = \omega$ when $\gamma_1 = \omega/2$.
 - (b) Note that

$$\sin^3 \gamma t = \sin \gamma t \sin^2 \gamma t = \frac{1}{2} [\sin \gamma t - \sin \gamma t \cos 2\gamma t].$$

Now

$$\sin(A+B) + \sin(A-B) = 2\sin A\cos B$$

 \mathbf{SO}

$$\sin\gamma t\cos 2\gamma t = \frac{1}{2}[\sin 3\gamma t - \sin\gamma t]$$

and

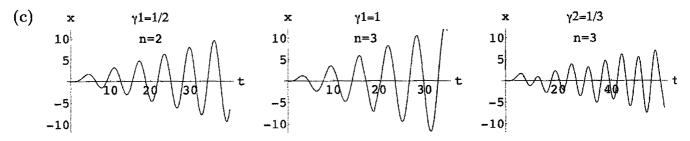
$$\sin^3 \gamma t = \frac{3}{4} \sin \gamma t - \frac{1}{4} \sin 3\gamma t.$$

Thus

$$x'' + \omega^2 x = \frac{3}{4}\sin\gamma t - \frac{1}{4}\sin 3\gamma t.$$

The frequency of free vibration is $\omega/2\pi$. Thus, when $\gamma_1/2\pi = \omega/2\pi$ or $\gamma_1 = \omega$, and $3\gamma_2/2\pi = \omega/2\pi$ or $3\gamma_2 = \omega$ or $\gamma_3 = \omega/3$, the system will be in pure resonance.

238



=5. Solving $\frac{1}{20}q'' + 2q' + 100q = 0$ we obtain $q(t) = e^{-20t}(c_1 \cos 40t + c_2 \sin 40t)$. The initial conditions q(0) = 5 and q'(0) = 0 imply $c_1 = 5$ and $c_2 = 5/2$. Thus

$$q(t) = e^{-20t} \left(5\cos 40t + \frac{5}{2}\sin 40t \right) = \sqrt{25 + 25/4} e^{-20t} \sin(40t + 1.1071)$$

and $q(0.01) \approx 4.5676$ coulombs. The charge is zero for the first time when $40t + 1.1071 = \pi$ or $t \approx 0.0509$ second.

45. Solving $\frac{1}{4}q'' + 20q' + 300q = 0$ we obtain $q(t) = c_1 e^{-20t} + c_2 e^{-60t}$. The initial conditions q(0) = 4 and q'(0) = 0 imply $c_1 = 6$ and $c_2 = -2$. Thus

$$q(t) = 6e^{-20t} - 2e^{-60t}.$$

Setting q = 0 we find $e^{40t} = 1/3$ which implies t < 0. Therefore the charge is not 0 for $t \ge 0$.

 \pm Solving $\frac{5}{3}q'' + 10q' + 30q = 300$ we obtain $q(t) = e^{-3t}(c_1 \cos 3t + c_2 \sin 3t) + 10$. The initial conditions q(0) = q'(0) = 0 imply $c_1 = c_2 = -10$. Thus

$$q(t) = 10 - 10e^{-3t}(\cos 3t + \sin 3t)$$
 and $i(t) = 60e^{-3t}\sin 3t$.

Solving i(t) = 0 we see that the maximum charge occurs when $t = \pi/3$ and $q(\pi/3) \approx 10.432$.

Solving q'' + 100q' + 2500q = 30 we obtain $q(t) = c_1 e^{-50t} + c_2 t e^{-50t} + 0.012$. The initial conditions q(0) = 0 and q'(0) = 2 imply $c_1 = -0.012$ and $c_2 = 1.4$. Thus, using i(t) = q'(t) we get

 $q(t) = -0.012e^{-50t} + 1.4te^{-50t} + 0.012$ and $i(t) = 2e^{-50t} - 70te^{-50t}$.

Solving i(t) = 0 we see that the maximum charge occurs when t = 1/35 second and $q(1/35) \approx$.01871 coulomb.

Solving q'' + 2q' + 4q = 0 we obtain $q_c = e^{-t} \left(\cos \sqrt{3}t + \sin \sqrt{3}t \right)$. The steady-state charge has the form $q_p = A \cos t + B \sin t$. Substituting into the differential equation we find

$$(3A+2B)\cos t + (3B-2A)\sin t = 50\cos t.$$

Thus, A = 150/13 and B = 100/13. The steady-state charge is

$$q_p(t) = \frac{150}{13}\cos t + \frac{100}{13}\sin t$$

and the steady-state current is

$$i_p(t) = -\frac{150}{13}\sin t + \frac{100}{13}\cos t.$$

Exercises 5.1 Linear Models: Initial-Value Problems

The Frida

$$i_p(t) = \frac{E_0}{Z} \left(\frac{R}{Z} \sin \gamma t - \frac{X}{Z} \cos \gamma t \right)$$

and $Z = \sqrt{X^2 + R^2}$ we see that the amplitude of $i_p(t)$ is

$$A = \sqrt{\frac{E_0^2 R^2}{Z^4} + \frac{E_0^2 X^2}{Z^4}} = \frac{E_0}{Z^2} \sqrt{R^2 + X^2} = \frac{E_0}{Z}.$$

F1. The differential equation is $\frac{1}{2}q'' + 20q' + 1000q = 100 \sin 60t$. To use Example 10 in the text the attractive $E_0 = 100$ and $\gamma = 60$. Then

$$X = L\gamma - \frac{1}{c\gamma} = \frac{1}{2}(60) - \frac{1}{0.001(60)} \approx 13.3333,$$
$$Z = \sqrt{X^2 + R^2} = \sqrt{X^2 + 400} \approx 24.0370,$$
$$E_{100} = 100$$

·:.]

$$\frac{E_0}{Z} = \frac{100}{Z} \approx 4.1603.$$

Figure Problem 50, then

$$i_p(t) \approx 4.1603 \sin(60t + \phi)$$

That $\sin \phi = -X/Z$ and $\cos \phi = R/Z$. Thus $\tan \phi = -X/R \approx -0.6667$ and ϕ is a fourth quantum. Now $\phi \approx -0.5880$ and

$$i_p(t) = 4.1603 \sin(60t - 0.5880).$$

E1. Solving $\frac{1}{2}q'' + 20q' + 1000q = 0$ we obtain $q_c(t) = e^{-20t}(c_1 \cos 40t + c_2 \sin 40t)$. The stead large has the form $q_p(t) = A \sin 60t + B \cos 60t + C \sin 40t + D \cos 40t$. Substituting information matrix anticipation we find

 $(-1600A - 2400B)\sin 60t + (2400A - 1600B)\cos 60t$

 $+ (400C - 1600D) \sin 40t + (1600C + 400D) \cos 40t$

 $= 200\sin 60t + 400\cos 40t.$

Equating coefficients we obtain A = -1/26, B = -3/52, C = 4/17, and D = 1/17. The state-charge is

$$q_p(t) = -\frac{1}{26}\sin 60t - \frac{3}{52}\cos 60t + \frac{4}{17}\sin 40t + \frac{1}{17}\cos 40t$$

i. I the steady-state current is

$$i_p(t) = -\frac{30}{13}\cos 60t + \frac{45}{13}\sin 60t + \frac{160}{17}\cos 40t - \frac{40}{17}\sin 40t.$$

240

53. Solving $\frac{1}{2}q'' + 10q' + 100q = 150$ we obtain $q(t) = e^{-10l}(c_1 \cos 10t + c_2 \sin 10t) + 3/2$. The initial conditions q(0) = 1 and q'(0) = 0 imply $c_1 = c_2 = -1/2$. Thus

$$q(t) = -\frac{1}{2}e^{-10t}(\cos 10t + \sin 10t) + \frac{3}{2}.$$

As $t \to \infty$, $q(t) \to 3/2$.

- 54. In Problem 50 it is shown that the amplitude of the steady-state current is E_0/Z , where $Z = \sqrt{X^2 + R^2}$ and $X = L\gamma 1/C\gamma$. Since E_0 is constant the amplitude will be a maximum when Z is a minimum. Since R is constant, Z will be a minimum when X = 0. Solving $L\gamma 1/C\gamma = 0$ for γ we obtain $\gamma = 1/\sqrt{LC}$. The maximum amplitude will be E_0/R .
- 55. By Problem 50 the amplitude of the steady-state current is E_0/Z , where $Z = \sqrt{X^2 + R^2}$ and $X = L\gamma 1/C\gamma$. Since E_0 is constant the amplitude will be a maximum when Z is a minimum. Since R is constant, Z will be a minimum when X = 0. Solving $L\gamma - 1/C\gamma = 0$ for C we obtain $C = 1/L\gamma^2$.
- 53. Solving $0.1q'' + 10q = 100 \sin \gamma t$ we obtain

$$q(t) = c_1 \cos 10t + c_2 \sin 10t + q_p(t)$$

where $q_p(t) = A \sin \gamma t + B \cos \gamma t$. Substituting $q_p(t)$ into the differential equation we find

$$(100 - \gamma^2)A\sin\gamma t + (100 - \gamma^2)B\cos\gamma t = 100\sin\gamma t.$$

Equating coefficients we obtain $A = 100/(100 - \gamma^2)$ and B = 0. Thus, $q_p(t) = \frac{100}{100 - \gamma^2} \sin \gamma t$. The initial conditions q(0) = q'(0) = 0 imply $c_1 = 0$ and $c_2 = -10\gamma/(100 - \gamma^2)$. The charge is

$$q(t) = \frac{10}{100 - \gamma^2} (10 \sin \gamma t - \gamma \sin 10t)$$

and the current is

$$i(t) = \frac{100\gamma}{100 - \gamma^2} (\cos \gamma t - \cos 10t).$$

 \mathbb{T}^{-} In an *LC*-series circuit there is no resistor, so the differential equation is

$$L\frac{d^2q}{dt^2} + \frac{1}{C}q = E(t).$$

Then $q(t) = c_1 \cos\left(t/\sqrt{LC}\right) + c_2 \sin\left(t/\sqrt{LC}\right) + q_p(t)$ where $q_p(t) = A \sin \gamma t + B \cos \gamma t$. Substituting $g_p(t)$ into the differential equation we find

$$\left(\frac{1}{C} - L\gamma^2\right) A \sin\gamma t + \left(\frac{1}{C} - L\gamma^2\right) B \cos\gamma t = E_0 \cos\gamma t.$$

Equating coefficients we obtain A = 0 and $B = E_0 C/(1 - LC\gamma^2)$. Thus, the charge is

$$q(t) = c_1 \cos \frac{1}{\sqrt{LC}} t + c_2 \sin \frac{1}{\sqrt{LC}} t + \frac{E_0 C}{1 - LC\gamma^2} \cos \gamma t.$$

241

Exercises 5.1 Linear Models: Initial-Value Problems

The initial conditions $q(0) = q_0$ and $q'(0) = i_0$ imply $c_1 = q_0 - E_0 C/(1 - LC\gamma^2)$ and $c_2 = i_0$. The current is i(t) = q'(t) or

$$i(t) = -\frac{c_1}{\sqrt{LC}} \sin \frac{1}{\sqrt{LC}} t + \frac{c_2}{\sqrt{LC}} \cos \frac{1}{\sqrt{LC}} t - \frac{E_0 C \gamma}{1 - LC \gamma^2} \sin \gamma t$$
$$= i_0 \cos \frac{1}{\sqrt{LC}} t - \frac{1}{\sqrt{LC}} \left(q_0 - \frac{E_0 C}{1 - LC \gamma^2} \right) \sin \frac{1}{\sqrt{LC}} t - \frac{E_0 C \gamma}{1 - LC \gamma^2} \sin \gamma t.$$

55. When the circuit is in resonance the form of $q_p(t)$ is $q_p(t) = At \cos kt + Bt \sin kt$ where k = 1Substituting $q_p(t)$ into the differential equation we find

$$q_p'' + k^2 q_p = -2kA\sin kt + 2kB\cos kt = \frac{E_0}{L}\cos kt.$$

Equating coefficients we obtain A = 0 and $B = E_0/2kL$. The charge is

$$q(t) = c_1 \cos kt + c_2 \sin kt + \frac{E_0}{2kL} t \sin kt.$$

The initial conditions $q(0) = q_0$ and $q'(0) = i_0$ imply $c_1 = q_0$ and $c_2 = i_0/k$. The current is

$$i(t) = -c_1 k \sin kt + c_2 k \cos kt + \frac{E_0}{2kL} (kt \cos kt + \sin kt)$$
$$= \left(\frac{E_0}{2kL} - q_0 k\right) \sin kt + i_0 \cos kt + \frac{E_0}{2L} t \cos kt.$$

Exercises 5.2 Linear Models: Boundary-Value Problems

1. (a) The general solution is

$$y(x) = c_1 + c_2 x + c_3 x^2 + c_4 x^3 + \frac{w_0}{24EI} x^4$$

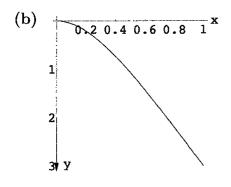
The boundary conditions are y(0) = 0, y'(0) = 0, y''(L) = 0, y'''(L) = 0. The fixconditions give $c_1 = 0$ and $c_2 = 0$. The conditions at x = L give the system

$$2c_3 + 6c_4L + \frac{w_0}{2EI}L^2 = 0$$
$$6c_4 + \frac{w_0}{EI}L = 0.$$

Solving, we obtain $c_3 = w_0 L^2/4EI$ and $c_4 = -w_0 L/6EI$. The deflection is

$$y(x) = \frac{w_0}{24EI}(6L^2x^2 - 4Lx^3 + x^4).$$

242



2. (a) The general solution is

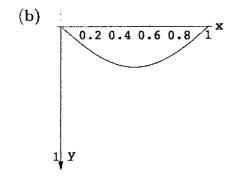
$$y(x) = c_1 + c_2 x + c_3 x^2 + c_4 x^3 + \frac{w_0}{24EI} x^4.$$

The boundary conditions are y(0) = 0, y''(0) = 0, y(L) = 0, y''(L) = 0. The first two conditions give $c_1 = 0$ and $c_3 = 0$. The conditions at x = L give the system

$$c_2L + c_4L^3 + \frac{w_0}{24EI}L^4 = 0$$
$$6c_4L + \frac{w_0}{2EI}L^2 = 0.$$

Solving, we obtain $c_2 = w_0 L^3/24 EI$ and $c_4 = -w_0 L/12 EI$. The deflection is

$$y(x) = \frac{w_0}{24EI}(L^3x - 2Lx^3 + x^4).$$



1. (a) The general solution is

$$y(x) = c_1 + c_2 x + c_3 x^2 + c_4 x^3 + \frac{w_0}{24EI} x^4.$$

The boundary conditions are y(0) = 0, y'(0) = 0, y(L) = 0, y''(L) = 0. The first two conditions give $c_1 = 0$ and $c_2 = 0$. The conditions at x = L give the system

$$c_3L^2 + c_4L^3 + \frac{w_0}{24EI}L^4 = 0$$
$$2c_3 + 6c_4L + \frac{w_0}{2EI}L^2 = 0.$$

Solving, we obtain $c_3 = w_0 L^2 / 16 EI$ and $c_4 = -5w_0 L / 48 EI$. The deflection is

$$y(x) = \frac{w_0}{48EI}(3L^2x^2 - 5Lx^3 + 2x^4).$$

243

4. (a) The general solution is

$$y(x) = c_1 + c_2 x + c_3 x^2 + c_4 x^3 + \frac{w_0 L^4}{E I \pi^4} \sin \frac{\pi}{L} x.$$

The boundary conditions are y(0) = 0, y'(0) = 0, y(L) = 0, y''(L) = 0. The first two condigive $c_1 = 0$ and $c_2 = -w_0 L^3 / EI\pi^3$. The conditions at x = L give the system

$$c_3L^2 + c_4L^3 + \frac{w_0}{EI\pi^3}L^4 = 0$$
$$2c_3 + 6c_4L = 0.$$

Solving, we obtain $c_3 = 3w_0L^2/2EI\pi^3$ and $c_4 = -w_0L/2EI\pi^3$. The deflection is

$$y(x) = \frac{w_0 L}{2EI\pi^3} \left(-2L^2 x + 3Lx^2 - x^3 + \frac{2L^3}{\pi} \sin \frac{\pi}{L} x \right).$$
(b)
(b)

- (c) Using a CAS we find the maximum deflection to be 0.270806 when x = 0.572536.
- 5. (a) The general solution is

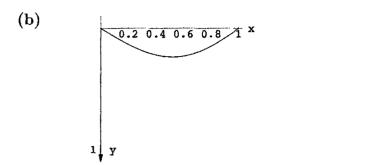
$$y(x) = c_1 + c_2 x + c_3 x^2 + c_4 x^3 + \frac{w_0}{120EI} x^5$$

The boundary conditions are y(0) = 0, y''(0) = 0, y(L) = 0, y''(L) = 0. The first two conditions give $c_1 = 0$ and $c_3 = 0$. The conditions at x = L give the system

$$c_2L + c_4L^3 + \frac{w_0}{120EI}L^5 = 0$$
$$6c_4L + \frac{w_0}{6EI}L^3 = 0.$$

Solving, we obtain $c_2 = 7w_0L^4/360EI$ and $c_4 = -w_0L^2/36EI$. The deflection is

$$y(x) = \frac{w_0}{360EI} (7L^4x - 10L^2x^3 + 3x^5)$$



(c) Using a CAS we find the maximum deflection to be 0.234799 when x = 0.51933.

6. (a)
$$y_{\text{max}} = y(L) = w_0 L^4 / 8EI$$

- (b) Replacing both L and x by L/2 in y(x) we obtain $w_0L^4/128EI$, which is 1/16 of the maximum deflection when the length of the beam is L.
- (c) $y_{\text{max}} = y(L/2) = 5w_0 L^4/384EI$
- (d) The maximum deflection in Example 1 is $y(L/2) = (w_0/24EI)L^4/16 = w_0L^4/384EI$, which is 1/5 of the maximum displacement of the beam in part (c).
- 7. The general solution of the differential equation is

$$y = c_1 \cosh \sqrt{\frac{P}{EI}} x + c_2 \sinh \sqrt{\frac{P}{EI}} x + \frac{w_0}{2P} x^2 + \frac{w_0 EI}{P^2}$$

Setting y(0) = 0 we obtain $c_1 = -w_0 EI/P^2$, so that

$$y = -\frac{w_0 EI}{P^2} \cosh \sqrt{\frac{P}{EI}} x + c_2 \sinh \sqrt{\frac{P}{EI}} x + \frac{w_0}{2P} x^2 + \frac{w_0 EI}{P^2}.$$

Setting y'(L) = 0 we find

$$c_2 = \left(\sqrt{\frac{P}{EI}} \frac{w_0 EI}{P^2} \sinh \sqrt{\frac{P}{EI}} L - \frac{w_0 L}{P}\right) / \sqrt{\frac{P}{EI}} \cosh \sqrt{\frac{P}{EI}} L.$$

•. The general solution of the differential equation is

$$y = c_1 \cos \sqrt{\frac{P}{EI}} x + c_2 \sin \sqrt{\frac{P}{EI}} x + \frac{w_0}{2P} x^2 + \frac{w_0 EI}{P^2}.$$

Setting y(0) = 0 we obtain $c_1 = -w_0 E I/P^2$, so that

$$y = -\frac{w_0 EI}{P^2} \cos \sqrt{\frac{P}{EI}} x + c_2 \sin \sqrt{\frac{P}{EI}} x + \frac{w_0}{2P} x^2 + \frac{w_0 EI}{P^2}.$$

Exercises 5.2 Linear Models: Boundary-Value Problems

Setting y'(L) = 0 we find

$$c_2 = \left(-\sqrt{\frac{P}{EI}} \frac{w_0 EI}{P^2} \sin \sqrt{\frac{P}{EI}} L - \frac{w_0 L}{P}\right) / \sqrt{\frac{P}{EI}} \cos \sqrt{\frac{P}{EI}} L.$$

- 9. This is Example 2 in the text with $L = \pi$. The eigenvalues are $\lambda_n = n^2 \pi^2 / \pi^2 = n^2$, n = 1. and the corresponding eigenfunctions are $y_n = \sin(n\pi x/\pi) = \sin nx$, n = 1, 2, 3, ...
- 10. This is Example 2 in the text with $L = \pi/4$. The eigenvalues are $\lambda_n = n^2 \pi^2/(\pi/4)^2 = 16n^2$ 2, 3, ... and the eigenfunctions are $y_n = \sin(n\pi x/(\pi/4)) = \sin 4nx$, n = 1, 2, 3, ...
- 11. For $\lambda \leq 0$ the only solution of the boundary-value problem is y = 0. For $\lambda = \alpha^2 > 0$ we have

$$y = c_1 \cos \alpha x + c_2 \sin \alpha x.$$

Now

$$y'(x) = -c_1 \alpha \sin \alpha x + c_2 \alpha \cos \alpha x$$

and y'(0) = 0 implies $c_2 = 0$, so

$$y(L) = c_1 \cos \alpha L = 0$$

gives

$$\alpha L = \frac{(2n-1)\pi}{2}$$
 or $\lambda = \alpha^2 = \frac{(2n-1)^2\pi^2}{4L^2}$, $n = 1, 2, 3, \dots$

The eigenvalues $(2n-1)^2 \pi^2 / 4L^2$ correspond to the eigenfunctions $\cos \frac{(2n-1)\pi}{2L} x$ for $n = 1, 2, 3, \ldots$.

12. For $\lambda \leq 0$ the only solution of the boundary-value problem is y = 0. For $\lambda = \alpha^2 > 0$ we have

$$y = c_1 \cos \alpha x + c_2 \sin \alpha x.$$

Since y(0) = 0 implies $c_1 = 0$, $y = c_2 \sin x \, dx$. Now

$$y'\left(\frac{\pi}{2}\right) = c_2 \alpha \cos \alpha \frac{\pi}{2} = 0$$

gives

$$\alpha \frac{\pi}{2} = \frac{(2n-1)\pi}{2}$$
 or $\lambda = \alpha^2 = (2n-1)^2$, $n = 1, 2, 3, \dots$

The eigenvalues $\lambda_n = (2n-1)^2$ correspond to the eigenfunctions $y_n = \sin(2n-1)x$.

13. For $\lambda = -\alpha^2 < 0$ the only solution of the boundary-value problem is y = 0. For $\lambda = 0$, $y = c_1 x + c_2$. Now $y' = c_1$ and y'(0) = 0 implies $c_1 = 0$. Then $y = c_2$ and $y'(\pi) = 0$. Thus an eigenvalue with corresponding eigenfunction y = 1. For $\lambda = \alpha^2 > 0$ we have

$$y = c_1 \cos \alpha x + c_2 \sin \alpha x.$$

246

Now

$$y'(x) = -c_1 \alpha \sin \alpha x + c_2 \alpha \cos \alpha x$$

and y'(0) = 0 implies $c_2 = 0$, so

 $y'(\pi) = -c_1 \alpha \sin \alpha \pi = 0$

gives

$$\alpha \pi = n\pi$$
 or $\lambda = \alpha^2 = n^2$. $n = 1, 2, 3, ...$

The eigenvalues n^2 correspond to the eigenfunctions $\cos nx$ for n = 0, 1, 2, ...

For $\lambda \leq 0$ the only solution of the boundary-value problem is y = 0. For $\lambda = \alpha^2 > 0$ we have

 $y = c_1 \cos \alpha x + c_2 \sin \alpha x.$

Now $y(-\pi) = y(\pi) = 0$ implies

$$c_1 \cos \alpha \pi - c_2 \sin \alpha \pi = 0$$

$$c_1 \cos \alpha \pi + c_2 \sin \alpha \pi = 0.$$
(1)

This homogeneous system will have a nontrivial solution when

$$\begin{vmatrix} \cos \alpha \pi & -\sin \alpha \pi \\ \cos \alpha \pi & \sin \alpha \pi \end{vmatrix} = 2 \sin \alpha \pi \cos \alpha \pi = \sin 2\alpha \pi = 0.$$

Then

$$2\alpha\pi = n\pi$$
 or $\lambda = \alpha^2 = \frac{n^2}{4}; n = 1, 2, 3, ...$

When n = 2k - 1 is odd, the eigenvalues are $(2k - 1)^2/4$. Since $\cos(2k - 1)\pi/2 = 0$ and $\sin(2k - 1)\pi/2 \neq 0$, we see from either equation in (1) that $c_2 = 0$. Thus, the eigenfunctions corresponding to the eigenvalues $(2k - 1)^2/4$ are $y = \cos(2k - 1)x/2$ for $k = 1, 2, 3, \ldots$. Similarly, when n = 2k is even, the eigenvalues are k^2 with corresponding eigenfunctions $y = \sin kx$ for $k = 1, 2, 3, \ldots$.

The auxiliary equation has solutions

$$m = \frac{1}{2} \left(-2 \pm \sqrt{4 - 4(\lambda + 1)} \right) = -1 \pm \alpha.$$

For $\lambda = -\alpha^2 < 0$ we have

 $y = e^{-x} \left(c_1 \cosh \alpha x + c_2 \sinh \alpha x \right).$

The boundary conditions imply

$$y(0) = c_1 = 0$$

$$y(5) = c_2 e^{-5} \sinh 5\alpha = 0$$

 $c_1 = c_2 = 0$ and the only solution of the boundary-value problem is y = 0.

247

Exercises 5.2 Linear Models: Boundary-Value Problems

For $\lambda = 0$ we have

$$y = c_1 e^{-x} + c_2 x e^{-x}$$

and the only solution of the boundary-value problem is y = 0.

For $\lambda = \alpha^2 > 0$ we have

$$y = e^{-x} \left(c_1 \cos \alpha x + c_2 \sin \alpha x \right).$$

Now y(0) = 0 implies $c_1 = 0$, so

$$y(5) = c_2 e^{-5} \sin 5\alpha = 0$$

gives

$$5\alpha = n\pi$$
 or $\lambda = \alpha^2 = \frac{n^2 \pi^2}{25}$, $n = 1, 2, 3, ...$

The eigenvalues $\lambda_n = \frac{n^2 \pi^2}{25}$ correspond to the eigenfunctions $y_n = e^{-x} \sin \frac{n\pi}{5} x$ for n = 1, 2, 414. For $\lambda < -1$ the only solution of the boundary-value problem is y = 0. For $\lambda = -1$ we $\lambda = c_1 x + c_2$. Now $y' = c_1$ and y'(0) = 0 implies $c_1 = 0$. Then $y = c_2$ and y'(1) = 0. Thus, $\lambda = 0$ is an eigenvalue with corresponding eigenfunction y = 1. For $\lambda > -1$ or $\lambda + 1 = \alpha^2 > 0$ we have

$$y = c_1 \cos \alpha x + c_2 \sin \alpha x.$$

Now

$$y' = -c_1 \alpha \sin \alpha x + c_2 \alpha \cos \alpha x$$

and
$$y'(0) = 0$$
 implies $c_2 = 0$, so

$$y'(1) = -c_1 \alpha \sin \alpha = 0$$

<u>annes</u>

$$\alpha = n\pi$$
, $\lambda + 1 = \alpha^2 = n^2 \pi^2$, or $\lambda = n^2 \pi^2 - 1$, $n = 1, 2, 3, ...$

The eigenvalues $n^2\pi^2 - 1$ correspond to the eigenfunctions $\cos n\pi x$ for n = 0, 1, 2, ...17. For $\lambda = \alpha^2 > 0$ a general solution of the given differential equation is

$$y = c_1 \cos(\alpha \ln x) + c_2 \sin(\alpha \ln x).$$

Since $\ln 1 = 0$, the boundary condition y(1) = 0 implies $c_1 = 0$. Therefore

$$y = c_2 \sin(\alpha \ln x).$$

Using $\ln e^{\pi} = \pi$ we find that $y(e^{\pi}) = 0$ implies

$$c_2 \sin \alpha \pi = 0$$

If $n\pi = n\pi$, $n = 1, 2, 3, \ldots$. The eigenvalues and eigenfunctions are, in turn,

 $\lambda = \alpha^2 = n^2$, n = 1, 2, 3, ... and $y = \sin(n \ln x)$.

248

For $\lambda \leq 0$ the only solution of the boundary-value problem is y = 0.

18. For $\lambda = 0$ the general solution is $y = c_1 + c_2 \ln x$. Now $y' = c_2/x$, so $y'(e^{-1}) = c_2 e = 0$ implies $c_2 = 0$. Then $y = c_1$ and y(1) = 0 gives $c_1 = 0$. Thus y(x) = 0.

For $\lambda = -\alpha^2 < 0$, $y = c_1 x^{-\alpha} + c_2 x^{\alpha}$. The boundary conditions give $c_2 = c_1 e^{2\alpha}$ and $c_1 = 0$, so that $c_2 = 0$ and y(x) = 0.

For $\lambda = \alpha^2 > 0$, $y = c_1 \cos(\alpha \ln x) + c_2 \sin(\alpha \ln x)$. From y(1) = 0 we obtain $c_1 = 0$ and $y = c_2 \sin(\alpha \ln x)$. Now $y' = c_2(\alpha/x) \cos(\alpha \ln x)$, so $y'(e^{-1}) = c_2 e \alpha \cos \alpha = 0$ implies $\cos \alpha = 0$ or $\alpha = (2n-1)\pi/2$ and $\lambda = \alpha^2 = (2n-1)^2 \pi^2/4$ for $n = 1, 2, 3, \ldots$. The corresponding eigenfunctions are

$$y_n = \sin\left(\frac{2n-1}{2}\pi\ln x\right).$$

19. For $\lambda = \alpha^4$, $\alpha > 0$, the general solution of the boundary-value problem

$$y^{(4)} - \lambda y = 0$$
, $y(0) = 0$, $y''(0) = 0$, $y(1) = 0$, $y''(1) = 0$

is

 $y = c_1 \cos \alpha x + c_2 \sin \alpha x + c_3 \cosh \alpha x + c_4 \sinh \alpha x.$

The boundary conditions y(0) = 0, y''(0) = 0 give $c_1 + c_3 = 0$ and $-c_1\alpha^2 + c_3\alpha^2 = 0$, from which we conclude $c_1 = c_3 = 0$. Thus, $y = c_2 \sin \alpha x + c_4 \sinh \alpha x$. The boundary conditions y(1) = 0, y''(1) = 0 then give

$$c_2 \sin \alpha + c_4 \sinh \alpha = 0$$

$$-c_2\alpha^2\sin\alpha + c_4\alpha^2\sinh\alpha = 0.$$

In order to have nonzero solutions of this system, we must have the determinant of the coefficients equal zero, that is,

$$\begin{vmatrix} \sin \alpha & \sinh \alpha \\ -\alpha^2 \sin \alpha & \alpha^2 \sinh \alpha \end{vmatrix} = 0 \quad \text{or} \quad 2\alpha^2 \sinh \alpha \sin \alpha = 0.$$

But since $\alpha > 0$, the only way that this is satisfied is to have $\sin \alpha = 0$ or $\alpha = n\pi$. The system is then satisfied by choosing $c_2 \neq 0$, $c_4 = 0$, and $\alpha = n\pi$. The eigenvalues and corresponding eigenfunctions are then

$$\lambda_n = \alpha^4 = (n\pi)^4, \ n = 1, 2, 3, \dots$$
 and $y = \sin n\pi x.$

1). For $\lambda = \alpha^4$, $\alpha > 0$, the general solution of the differential equation is

 $y = c_1 \cos \alpha x + c_2 \sin \alpha x + c_3 \cosh \alpha x + c_4 \sinh \alpha x.$

The boundary conditions y'(0) = 0, y'''(0) = 0 give $c_2\alpha + c_4\alpha = 0$ and $-c_2\alpha^3 + c_4\alpha^3 = 0$ from which we conclude $c_2 = c_4 = 0$. Thus, $y = c_1 \cos \alpha x + c_3 \cosh \alpha x$. The boundary conditions $y(\pi) = 0$,

249

 $y''(\pi) = 0$ then give

$$c_2 \cos \alpha \pi + c_4 \cosh \alpha \pi = 0$$
$$-c_2 \lambda^2 \cos \alpha \pi + c_4 \lambda^2 \cosh \alpha \pi = 0.$$

The determinant of the coefficients is $2\alpha^2 \cosh \alpha \cos \alpha = 0$. But since $\alpha > 0$, the only way the this is satisfied is to have $\cos \alpha \pi = 0$ or $\alpha = (2n-1)/2$, $n = 1, 2, 3, \ldots$. The eigenvalues is corresponding eigenfunctions are

$$\lambda_n = \alpha^4 = \left(\frac{2n-1}{2}\right)^4, \ n = 1, 2, 3, \dots$$
 and $y = \cos\left(\frac{2n-1}{2}\right)x$.

21. If restraints are put on the column at x = L/4, x = L/2, and x = 3L/4, then the critical load will be P_4 .

22. (a) The general solution of the differential equation is

$$y = c_1 \cos \sqrt{\frac{P}{EI}} x + c_2 \sin \sqrt{\frac{P}{EI}} x + \delta$$

Since the column is embedded at x = 0, the boundary conditions are y(0) = y'(0) = 0. If $\delta =$ this implies that $c_1 = c_2 = 0$ and y(x) = 0. That is, there is no deflection.

-

(b) If $\delta \neq 0$, the boundary conditions give, in turn, $c_1 = -\delta$ and $c_2 = 0$. Then

$$y = \delta \left(1 - \cos \sqrt{\frac{P}{EI}} x \right)$$

In order to satisfy the boundary condition $y(L) = \delta$ we must have

$$\delta = \delta \left(1 - \cos \sqrt{\frac{P}{EI}} L \right) \quad \text{or} \quad \cos \sqrt{\frac{P}{EI}} L = 0.$$

This gives $\sqrt{P/EI} L = n\pi/2$ for n = 1, 2, 3, ... The smallest value of P_n , the Euler load then

$$\sqrt{\frac{P_1}{EI}L} = \frac{\pi}{2}$$
 or $P_1 = \frac{1}{4}\left(\frac{\pi^2 EI}{L^2}\right)$

13. If $\lambda = \alpha^2 = P/EI$, then the solution of the differential equation is

$$y = c_1 \cos \alpha x + c_2 \sin \alpha x + c_3 x + c_4$$

250

The conditions y(0) = 0, y''(0) = 0 yield, in turn, $c_1 + c_4 = 0$ and $c_1 = 0$. With $c_1 = 0$ and $c_4 = 0$ the solution is $y = c_2 \sin \alpha x + c_3 x$. The conditions y(L) = 0, y''(L) = 0, then yield

 $c_2 \sin \alpha L + c_3 L = 0$ and $c_2 \sin \alpha L = 0$.

Hence, nontrivial solutions of the problem exist only if $\sin \alpha L = 0$. From this point on, the analysis is the same as in Example 3 in the text.

 \mathbf{L} : (a) The boundary-value problem is

$$\frac{d^4y}{dx^4} + \lambda \frac{d^2y}{dx^2} = 0, \quad y(0) = 0, \ y'(0) = 0, \ y(L) = 0, \ y'(L) = 0,$$

where $\lambda = \alpha^2 = P/EI$. The solution of the differential equation is $y = c_1 \cos \alpha x + c_2 \sin \alpha x + c_3 x + c_4$ and the conditions y(0) = 0, y''(0) = 0 yield $c_1 = 0$ and $c_4 = 0$. Next, by applying y(L) = 0, y'(L) = 0 to $y = c_2 \sin \alpha x + c_3 x$ we get the system of equations

$$c_2 \sin \alpha L + c_3 L = 0$$

$$\alpha c_2 \cos \alpha L + c_3 = 0.$$

To obtain nontrivial solutions c_2 , c_3 , we must have the determinant of the coefficients equal to zero:

$$\begin{vmatrix} \sin \alpha L & L \\ \alpha \cos \alpha L & 1 \end{vmatrix} = 0 \quad \text{or} \quad \tan \beta = \beta,$$

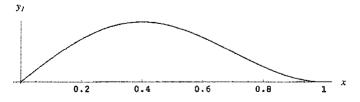
where $\beta = \alpha L$. If β_n denotes the positive roots of the last equation, then the eigenvalues are found from $\beta_n = \alpha_n L = \sqrt{\lambda_n} L$ or $\lambda_n = (\beta_n/L)^2$. From $\lambda = P/EI$ we see that the critical loads are $P_n = \beta_n^2 EI/L^2$. With the aid of a CAS we find that the first positive root of $\tan \beta = \beta$ is (approximately) $\beta_1 = 4.4934$, and so the Euler load is (approximately) $P_1 = 20.1907 EI/L^2$. Finally, if we use $c_3 = -c_2 \alpha \cos \alpha L$, then the deflection curves are

$$y_n(x) = c_2 \sin \alpha_n x + c_3 x = c_2 \left[\sin \left(\frac{\beta_n}{L} x \right) - \left(\frac{\beta_n}{L} \cos \beta_n \right) x \right].$$

(b) With L = 1 and c_2 appropriately chosen, the general shape of the first buckling mode,

$$y_1(x) = c_2 \left[\sin\left(\frac{4.4934}{L}x\right) - \left(\frac{4.4934}{L}\cos(4.4934)\right)x \right],$$

is shown below.



The general solution is

$$y = c_1 \cos \sqrt{\frac{
ho}{T}} \, \omega x + c_2 \sin \sqrt{\frac{
ho}{T}} \, \omega x.$$

251